149 research outputs found

    A family of linearizable recurrences with the Laurent property

    Get PDF
    We consider a family of non-linear recurrences with the Laurent property. Although these recurrences are not generated by mutations in a cluster algebra, they fit within the broader framework of Laurent phenomenon algebras, as introduced recently by Lam and Pylyavskyy. Furthermore, each member of this family is shown to be linearizable in two different ways, in the sense that its iterates satisfy both a linear relation with constant coefficients and a linear relation with periodic coefficients. Associated monodromy matrices and first integrals are constructed, and the connection with the dressing chain for Schrödinger operators is also explained

    Mutation-Periodic Quivers, Integrable Maps and Associated Poisson Algebras

    Get PDF
    We consider a class of map, recently derived in the context of cluster mutation. In this paper we start with a brief review of the quiver context, but then move onto a discussion of a related Poisson bracket, along with the Poisson algebra of a special family of functions associated with these maps. A bi-Hamiltonian structure is derived and used to construct a sequence of Poisson commuting functions and hence show complete integrability. Canonical coordinates are derived, with the map now being a canonical transformation with a sequence of commuting invariant functions. Compatibility of a pair of these functions gives rise to Liouville's equation and the map plays the role of a B\"acklund transformation.Comment: 17 pages, 7 figures. Corrected typos and updated reference detail

    A Nonliearly Dispersive Fifth Order Integrable Equation and its Hierarchy

    Full text link
    In this paper, we study the properties of a nonlinearly dispersive integrable system of fifth order and its associated hierarchy. We describe a Lax representation for such a system which leads to two infinite series of conserved charges and two hierarchies of equations that share the same conserved charges. We construct two compatible Hamiltonian structures as well as their Casimir functionals. One of the structures has a single Casimir functional while the other has two. This allows us to extend the flows into negative order and clarifies the meaning of two different hierarchies of positive flows. We study the behavior of these systems under a hodograph transformation and show that they are related to the Kaup-Kupershmidt and the Sawada-Kotera equations under appropriate Miura transformations. We also discuss briefly some properties associated with the generalization of second, third and fourth order Lax operators.Comment: 11 pages, LaTex, version to be published in Journal of Nonlinear Mathematical Physics, has expanded discussio

    The generalized Kupershmidt deformation for constructing new integrable systems from integrable bi-Hamiltonian systems

    Full text link
    Based on the Kupershmidt deformation for any integrable bi-Hamiltonian systems presented in [4], we propose the generalized Kupershmidt deformation to construct new systems from integrable bi-Hamiltonian systems, which provides a nonholonomic perturbation of the bi-Hamiltonian systems. The generalized Kupershmidt deformation is conjectured to preserve integrability. The conjecture is verified in a few representative cases: KdV equation, Boussinesq equation, Jaulent-Miodek equation and Camassa-Holm equation. For these specific cases, we present a general procedure to convert the generalized Kupershmidt deformation into the integrable Rosochatius deformation of soliton equation with self-consistent sources, then to transform it into a tt-type bi-Hamiltonian system. By using this generalized Kupershmidt deformation some new integrable systems are derived. In fact, this generalized Kupershmidt deformation also provides a new method to construct the integrable Rosochatius deformation of soliton equation with self-consistent sources.Comment: 21 pages, to appear in Journal of Mathematical Physic

    Integrated Lax Formalism for PCM

    Full text link
    By solving the first-order algebraic field equations which arise in the dual formulation of the D=2 principal chiral model (PCM) we construct an integrated Lax formalism built explicitly on the dual fields of the model rather than the currents. The Lagrangian of the dual scalar field theory is also constructed. Furthermore we present the first-order PDE system for an exponential parametrization of the solutions and discuss the Frobenious integrability of this system.Comment: 24 page

    Painleve property and the first integrals of nonlinear differential equations

    Full text link
    Link between the Painleve property and the first integrals of nonlinear ordinary differential equations in polynomial form is discussed. The form of the first integrals of the nonlinear differential equations is shown to determine by the values of the Fuchs indices. Taking this idea into consideration we present the algorithm to look for the first integrals of the nonlinear differential equations in the polynomial form. The first integrals of five nonlinear ordinary differential equations are found. The general solution of one of the fourth ordinary differential equations is given.Comment: 22 page

    Eisenhart lift of 2-dimensional mechanics

    Get PDF
    The Eisenhart lift is a variant of geometrization of classical mechanics with d degrees of freedom in which the equations of motion are embedded into the geodesic equations of a Brinkmann-type metric defined on (d+2) (d+2) -dimensional spacetime of Lorentzian signature. In this work, the Eisenhart lift of 2-dimensional mechanics on curved background is studied. The corresponding 4-dimensional metric is governed by two scalar functions which are just the conformal factor and the potential of the original dynamical system. We derive a conformal symmetry and a corresponding quadratic integral, associated with the Eisenhart lift. The energy–momentum tensor is constructed which, along with the metric, provides a solution to the Einstein equations. Uplifts of 2-dimensional superintegrable models are discussed with a particular emphasis on the issue of hidden symmetries. It is shown that for the 2-dimensional Darboux–Koenigs metrics, only type I can result in Eisenhart lifts which satisfy the weak energy condition. However, some physically viable metrics with hidden symmetries are presented

    Symplectic Maps from Cluster Algebras

    No full text
    We consider nonlinear recurrences generated from the iteration of maps that arise from cluster algebras. More precisely, starting from a skew-symmetric integer matrix, or its corresponding quiver, one can define a set of mutation operations, as well as a set of associated cluster mutations that are applied to a set of affine coordinates (the cluster variables). Fordy and Marsh recently provided a complete classification of all such quivers that have a certain periodicity property under sequences of mutations. This periodicity implies that a suitable sequence of cluster mutations is precisely equivalent to iteration of a nonlinear recurrence relation. Here we explain briefly how to introduce a symplectic structure in this setting, which is preserved by a corresponding birational map (possibly on a space of lower dimension). We give examples of both integrable and non-integrable maps that arise from this construction. We use algebraic entropy as an approach to classifying integrable cases. The degrees of the iterates satisfy a tropical version of the map

    Solitons from Dressing in an Algebraic Approach to the Constrained KP Hierarchy

    Full text link
    The algebraic matrix hierarchy approach based on affine Lie sl(n)sl (n) algebras leads to a variety of 1+1 soliton equations. By varying the rank of the underlying sl(n)sl (n) algebra as well as its gradation in the affine setting, one encompasses the set of the soliton equations of the constrained KP hierarchy. The soliton solutions are then obtained as elements of the orbits of the dressing transformations constructed in terms of representations of the vertex operators of the affine sl(n)sl (n) algebras realized in the unconventional gradations. Such soliton solutions exhibit non-trivial dependence on the KdV (odd) time flows and KP (odd and even) time flows which distinguishes them from the conventional structure of the Darboux-B\"{a}cklund Wronskian solutions of the constrained KP hierarchy.Comment: LaTeX, 13pg
    corecore