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A family of linearisable recurrences with the Laurent property

A.N.W. Hone and C. Ward

Abstract

We consider a family of nonlinear recurrences with the Laurent property. Although these
recurrences are not generated by mutations in a cluster algebra, they fit within the broader
framework of Laurent phenomenon algebras, as introduced recently by Lam and Pylyavskyy.
Furthermore, each member of this family is shown to be linearisable in two different ways, in the
sense that its iterates satisfy both a linear relation with constant coefficients and a linear relation
with periodic coefficients. Associated monodromy matrices and first integrals are constructed,
and the connection with the dressing chain for Schrödinger operators is also explained.

1. Introduction

A nonlinear recurrence relation is said to possess the Laurent property if all of its iterates are
Laurent polynomials in the initial data with integer coefficients. Particular recurrences of the
form

xn+Nxn = F (xn+1, . . . , xn+N−1) , (1.1)

with F being a polynomial, first gained wider notice through the article by Gale [9], which
highlighted the fact that such nonlinear relations can unexpectedly generate integer sequences.
The second order recurrence

xn+2xn = x2
n+1 + 1 (1.2)

is one of the simplest examples of this type. With the initial values x0 = 1, x1 = 1, this generates
a sequence beginning 1, 1, 2, 5, 13, 34, 89, 233, . . ., and it turns out that xn is an integer for all
n, but it is not obvious why this should be so. The fact that (1.2) has the Laurent property
provides an explanation: if x0 and x1 are considered as variables, then each xn is an element
of the Laurent polynomial ring Z[x±10 , x±11 ], and so generates an integer when evaluated at
x0 = x1 = 1.
One of the motivations behind Fomin and Zelevinksky’s cluster algebras, introduced in [4],

was to provide an axiomatic framework for the Laurent property, which arises in many different
areas of mathematics. A cluster is an N -tuple x = (x1, x2, . . . , xN ) which can be mutated in
direction j for each choice of j ∈ {1, . . . , N}, to produce a new cluster x

′ with components
x′k = xk for k 6= j and x′j determined by the exchange relation

x′jxj =
∏

bij>0

x
bij
i +

∏

bij<0

x
−bij
i (1.3)

for a coefficient-free (geometric type) cluster algebra, where B = (bij) is an associated skew-
symmetrizable N ×N integer matrix. There is also an associated operation of matrix mutation,
B → B′, the precise details of which are not needed here.
In general, sequences of mutations in a cluster algebra do not generate orbits of a fixed map,

since the exponents in (1.3) both depend on j and vary under the mutation of the matrix B.
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However, Fordy and Marsh [6] found criteria for a skew-symmetric matrix B (or the equivalent
quiver) to vary periodically under a cyclic sequence of mutations, and in particular showed how
this can correspond to the iteration of a single recurrence relation of the form (1.1), with F
being a sum of two monomials obtained from an exchange relation (1.3). For the classification
of mutation-periodic quivers in [6], the building-blocks were provided by the affine A-type
quivers (referred to there as “primitives”), and it was also shown that sequences of cluster
variables generated from these affine quivers satisfy linear relations with constant coefficients.
The same result was found independently in [1], where it was conjectured (and also proved for
type D) that there should be linear relations for cluster variables associated with all the affine
Dynkin types; the full conjecture was proved in [15].
In [7] it was shown that the Ã1,N−1 exchange relations produce integrable maps for N

even; in the non-commutative setting, the exchange relations for N odd were considered in [2].
The simplest case (N = 2) is just the recurrence (1.2), which preserves the Poisson bracket
{xn, xn+1} = xnxn+1, and has a conserved quantity C (independent of n) that appears as a
non-trivial coefficient in the linear relation for the sequence of cluster variables (xn), that is

xn+2 − Cxn+1 + xn = 0, with C =
xn

xn+1
+

xn+1

xn
+

1

xnxn+1
.

Whenever a nonlinear recurrence is such that its iterates satisfy a linear relation, as is the case
here, we say that it is linearisable.
Q-systems, which arise from the Bethe ansatz for quantum integrable models, provide further

examples of nonlinear recurrences which are obtained from sequences of cluster mutations [14],
and are also linearisable in the above sense [2]. They correspond to characters of representations
of Yangian algebras, as well as being reductions of discrete Hirota equations [17]. The simplest
case is the A1 Q-system, which coincides with (1.2). In addition to the aforementioned examples
coming from affine A-type quivers, yet another family of linearisable recurrences obtained from
cluster mutations is considered in [8].
In this paper we will consider the family of nonlinear recurrences given by

xn+Nxn = xn+N−1xn+1 + a

N−1
∑

i=1

xn+i, (1.4)

where N ≥ 2 is an integer and a is a constant parameter. We will show that all of these
recurrences have the Laurent property, and they are linearisable. However, observe that the
right hand side of (1.4) has N terms, which means that for N ≥ 3 it cannot be obtained from
an exchange relation in a cluster algebra, since for that to be so the polynomial F should have
the same binomial form as (1.3); the case N = 2 is not an exchange relation either (but see
Example 4.11 in [8]).
The inspiration for (1.4) comes from results of Heideman and Hogan [11], who considered

odd order recurrences of the form

xn+2k+1xn = xn+2kxn+1 + xn+k + xn+k+1, (1.5)

and showed that an integer sequence is generated for initial data x0 = x1 = . . . = x2k = 1.
Their argument is based on the fact that each of these integer sequences also satisfies a linear
recurrence relation, which can be restated thus:

Proposition 1.1 ([11, Lemma 2]). For each integer k ≥ 1, the iterates of recurrence (1.5)
with the initial data xi = 1, i = 0, . . . , 2k, satisfy the homogeneous linear relation

xn+6k − (2k2 + 8k + 4)
(

xn+4k − xn+2k

)

− xn = 0 ∀n ∈ Z. (1.6)
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When N = 3 the recurrence (1.4) coincides with (1.5) for k = 1, and is a special case of a
more general third order recurrence that is shown to be linearisable in [13].
In the case of (1.4) it turns out that the integer sequence generated by choosing all N data

to take the value 1 is related to the Fibonacci numbers, which we denote by fn (with the
convention that f0 = 0, f1 = 1). The analogue of Proposition 1.1 is as follows.

Proposition 1.2. For each integer N ≥ 2, the iterates of recurrence (1.4) with the initial
data xi = 1, i = 0, . . . , p = N − 1, satisfy the homogeneous linear relation

xn+3p − (f2p+2 + pf2p − f2p−2 + 1)
(

xn+2p − xn+p

)

− xn = 0 ∀n ∈ Z. (1.7)

1.1. Outline of the paper

Although (1.4) cannot be obtained from a cluster algebra, in the next section we briefly
explain how it fits into the broader framework of Laurent phenomenon algebras (LP algebras),
introduced in [16], which immediately shows that the Laurent property holds. In the third
section we present Theorem 3.3, our main result on the linearisability of (1.4); in addition
to a linear relation with coefficients that are first integrals (i.e. conserved quantities like C
above), the iterates also satisfy a linear relation with periodic coefficients. Although the result
essentially follows by adapting methods from [8], the complete proof involves the detailed
structure of monodromy matrices associated with an integrable Hamiltonian system, namely
the periodic dressing chain of [19]; this connection is explained in section 4. Section 5 contains
our conclusions, while the properties of the particular family of integer sequences in Proposition
1.2 are reserved for an appendix.

2. Laurent phenomenon algebras

A seed in a cluster algebra is a pair (x, B), where x is a cluster and B is a skew-symmetrizable
integer matrix; for each index j, an associated exchange polynomial is given by the right hand
side of (1.3). In the setting of LP algebras, introduced recently by Lam and Pylyavskyy [16],
the exchange polynomials are allowed to be irreducible polynomials with an arbitrary number
of terms, rather than just binomials. The Laurent phenomenon for certain recurrences of the
type (1.1) with non-binomial F was already observed in Gale’s article [9], with Fomin and
Zelevinsky’s Caterpillar Lemma eventually providing a means to prove the Laurent property
in this more general setting [5]. The axioms of an LP algebra, which we briefly describe below,
guarantee that mutations of an initial seed always produce Laurent polynomials in the initial
cluster variables.
A seed in an LP algebra of rank N is a pair of N -tuples t = (x,F), where x is a cluster, and

the entries of F are exchange polynomials Fj ∈ P := S[x1, . . . , xN ], where S is a coefficient
ring. The exchange polynomials must satisfy the conditions that (1) Fj is irreducible in
P and not divisible by any variable xi, and (2) Fj does not involve the variable xj , for
j = 1, . . . , N . A set of exchange Laurent polynomials {F̂1, . . . , F̂N} is also defined such that,
for all j, (i) there are ai ∈ Z≤0 for each i 6= j with F̂j = Fj

∏

i6=j x
ai
i , and (ii) F̂i|xj←Fj/x ∈

S[x±11 , . . . , x±1j−1, x
±1, x±1j+1, . . . , x

±1
N ] and is not divisible by Fj . Mutation in direction j gives

(x,F) → (x′,F′), where the cluster variables of the new seed are given by x′k = xk for k 6= j
and x′j = F̂j/xj . For the new exchange polynomials, set

Gk = Fk

∣

∣

∣

xj←
F̂j |xk←0

x′
j
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and define Hk by removing all common factors with F̂j |xk←0 from Gk; then F ′k = MHk where
M is a Laurent monomial in the new cluster variables. Lam and Pylyavskyy proved in [16,
Theorem 5.1] that the Laurent phenomenon holds for LP algebras, which means that cluster
variables obtained by arbitrary sequences of mutations belong to S[x±11 , . . . , x±1N ].
To see how each of the recurrences (1.4) fits into the LP algebra framework, we take the

coefficient ring S = Z[a]. The initial seed is then given by t1 = {(x1, F1), . . . , (xN , FN )}, with
the irreducible exchange polynomials

F1 = xNx2 + a
N
∑

i=2

xi, FN = xN−1x1 + a
N−1
∑

i=1

xi, Fk = a+ xk−1 + xk+1 otherwise.

Mutating t1 in direction 1 gives a new seed t2 = {(xN+1, F
′
1), (x2, F

′
2), . . . (xN , F ′N )}, containing

one new cluster variable x′1 = xN+1, where

F ′1 = F1, F ′2 = xN+1x3 + a

N+1
∑

i=3

xi, F ′N = a+ xN−1 + xN+1, F ′k = Fk otherwise.

The seeds t1 and t2 are similar to each other, in the sense of 3.4 in [16] (see also section
7 therein): they are transformed one to the other by (x1, x2, . . . , xN ) → (x2, x3, . . . , xN+1),
corresponding to a single iteration of (1.4), and successive iterations are generated by mutating
t2 in direction 2, and so forth. For the rest of the paper, it will be more convenient to take
x0, x1, . . . , xN−1 as initial data, and introduce the ring of Laurent polynomials

RN := Z[a, x±10 , . . . , x±1N−1],

in order to make the following statement.

Theorem 2.1. For each N the Laurent property holds for (1.4), i.e. xn ∈ RN ∀n ∈ Z.

Working in the ambient field of fractions Q(a, x0, . . . , xN−1), it is also worth noting that,
from the form of (1.4), the iterates xn can be written as subtraction-free rational expressions
in a and the initial data, and hence are all non-vanishing.

3. Linearisability

In order to show that the iterates of (1.4) satisfy linear relations, we begin by noting that
the nonlinear recurrence can be rewritten using a 2× 2 determinant as

Dn = a

N−1
∑

i=1

xn+i, where Dn :=

∣

∣

∣

∣

xn xn+N−1
xn+1 xn+N

∣

∣

∣

∣

, (3.1)

and proceed to consider the 3× 3 matrix

Ψn =





xn xn+N−1 xn+2N−2
xn+1 xn+N xn+2N−1
xn+2 xn+N+1 xn+2N



 . (3.2)

Iterating (1.4) with initial data (x0, x1, . . . , xN−1) is equivalent to iterating the birational map

ϕ : (x0, x1, . . . , xN−1) 7→

(

x1, x2, . . . ,
(

xN−1x1 + a
N−1
∑

i=1

)

/x0

)

. (3.3)

The key to obtaining linear relations for the variables xn is the observation that the determinant
of the matrix Ψn is invariant under n → n+ 1, meaning that it provides a conserved quantity
for the map ϕ.
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Lemma 3.1. The determinant of the matrix Ψn is invariant under the map ϕ defined by
the recurrence (1.4). In other words, if it is written in terms of the initial data as

detΨn = µ(x0, x1, . . . , xN−1), (3.4)

then the function µ is a first integral, i.e. it satisfies ϕ∗µ = µ.

Proof. To begin with, we note that the identity

Dn+1 −Dn = a(xn+N − xn+1) (3.5)

follows from (3.1). We wish to show that detΨn+1 = detΨn for all n. However, since all
formulae remain valid under shifting each of the indices by an arbitrary amount, it is sufficient
to perform the calculation with n = 0 for ease of notation. Using the method of Dodgson
condensation [3] to expand the 3× 3 determinant in terms of 2× 2 minors, we calculate

detΨ0 =
1

xN

∣

∣

∣

∣

D0 DN−1
D1 DN

∣

∣

∣

∣

=
1

xN

∣

∣

∣

∣

D1 + a(x1 − xN ) DN + a(xN − x2N−1)
D1 DN

∣

∣

∣

∣

=
a

xN

(

DN (x1 − xN )−D1(xN − x2N−1)
)

,

where we have used (3.5). Similarly, by using (3.5) again, we have

detΨ1 =
1

xN+1

∣

∣

∣

∣

D1 DN

D2 DN+1

∣

∣

∣

∣

=
1

xN

∣

∣

∣

∣

D1 DN

D1 + a(xN+1 − x2) DN + a(x2N − xN+1)

∣

∣

∣

∣

=
a

xN

(

D1(x2N − xN+1)−DN(xN+1 − x2)
)

.

Taking the difference and multiplying by a common denominator gives

xNxN+1

a
(detΨ1 − detΨ0) = DN

(

− xN (xN+1 − x2)− xN+1(x1 − xN )
)

+D1

(

xN (x2N − xN+1) + xN+1(xN − x2N−1)
)

= −DND1 +D1DN = 0,

as required. Hence the determinant of the 3× 3 matrix Ψn is a conserved quantity (independent
of n). Starting from the matrix (3.2) with n = 0, detΨ0 can be rewritten as a rational function
of the initial values x0, . . . , xN−1, denoted µ as in (3.4), by repeatedly using (1.4) to express x2N

as a rational function of terms of lower index, then x2N−1, etc. By construction, the pullback
of this function satisfies ϕ∗µ = µ · ϕ = µ, so µ is a first integral for the map (3.3).

Remark 1. The first integral µ is a rational function, or more precisely a Laurent
polynomial, in terms of the variables x0, . . . , xN−1. To verify that it is not identically zero,
it is enough to check that one specific choice of initial values gives a non-vanishing value
of µ. In particular, for the sequence beginning with all N initial values equal to 1, the
value of µ can be calculated by using the formulae (6.1) found in the Appendix, which gives
µ(1, 1, . . . , 1) = f2pp

2 6= 0 (where p = N − 1).

Corollary 3.2. If the sequence (xn) satisfies (1.4), then det Ψ̂n = 0, where

Ψ̂n =









xn xn+N−1 xn+2N−2 xn+3N−3
xn+1 xn+N xn+2N−1 xn+3N−2
xn+2 xn+N+1 xn+2N xn+3N−1
xn+3 xn+N+2 xn+2N+1 xn+3N









. (3.6)
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Proof. Note that from (3.1) it follows that Dn is a subtraction-free rational expression in
the initial data, hence is non-vanishing for all n. Applying Dodgson condensation again yields

det Ψ̂n =
detΨn detΨn+N − detΨn+1 detΨn+N−1

Dn+N
= 0,

since, by Lemma 3.1, detΨn is independent of n.

The fact that the 4× 4 matrix in (3.6) has a non-trivial kernel is enough to show that
sequences (xn) generated by (1.4) also satisfy linear recurrence relations. There are two types
of relation, corresponding to the kernel of Ψ̂n, and to the kernel of its transpose, respectively.
In order to describe these relations more explicitly, it is helpful to introduce the functions

Jn =
xn+2 + xn + a

xn+1
, (3.7)

which turn out to be periodic with respect to n.

Theorem 3.3. The iterates of the recurrence (1.4) satisfy the pair of homogeneous linear
relations

xn+3N−3 −K(xn+2N−2 − xn+N−1)− xn = 0, (3.8)

xn+3 − (1 + Jn+1)xn+2 + (1 + Jn)xn+1 − xn = 0, (3.9)

where K is a first integral (independent of n), and the coefficients of (3.9) are periodic, such
that Jn+N−1 = Jn for all n.

Proof. From Corollary 3.2, the existence of the two linear relations follows by arguments
which are almost identical to those used for the proof of Lemma 5.1 in [8]. We first sketch the
essential argument for (3.8), before discussing further details of the coefficients in each relation.
Without loss of generality, a non-zero vector wn in the kernel of Ψ̂n can be written in

normalised form aswn = (An, Bn, Cn,−1)T . Indeed, the last entry cannot vanish, for otherwise
there would be a non-trivial kernel for the 3× 3 matrix Ψn given by (3.2), contradicting the
remark that µ is not identically zero. The first three rows of the equation Ψ̂nwn = 0 produce
the linear system

Ψn





An

Bn

Cn



 =





xn+3N−3
xn+3N−2
xn+3N−1



 , (3.10)

while the last three rows of the same equation give

Ψn+1





An

Bn

Cn



 =





xn+3N−2
xn+3N−1
xn+3N



 . (3.11)

Each of the systems (3.10) and (3.11) can be solved for the vector (An, Bn, Cn)
T , and the two

different expressions that result differ by a shift n → n+ 1, which implies that this vector must
be independent of n. Upon applying Cramer’s rule to the system (3.10), the first component
can be simplified as An = detΨn+N−1/ detΨn = 1, by Lemma 3.1. Supposing that they are
not trivially constant, the other two components are first integrals, so we may set K(1) = Cn

and K(2) = −Bn, and then the equation for wn gives the relation

xn+3N−3 −K(1)xn+2N−2 +K(2)xn+N−1 − xn = 0, (3.12)

where the coefficients are all independent of n.
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By considering the kernel of Ψ̂T
n , an almost identical argument shows that (xn) also satisfies

a four-term linear relation with coefficients that are periodic with period N − 1. However, this
four-term relation can be obtained more directly in another way. Upon setting En := xn+Nxn −
xn+N−1xn+1 − a(xn+1 + . . .+ xn+N−1), which vanishes for all n whenever (1.4) holds, taking
the forward difference En+1 − En = 0 and rearranging yields

xn+N+1 + xn+N−1 + a

xn+N
=

xn+2 + xn + a

xn+1
. (3.13)

Comparison of the above identity with (3.7) reveals that the sequence of quantities Jn is
periodic with period p = N − 1: the left hand side of (3.13) is Jn+p, and the right hand side is
Jn. Now rearranging (3.7) clearly gives an inhomogeneous linear equation, namely

xn+2 − Jnxn+1 + xn + a = 0. (3.14)

The forward difference operator applied to the latter equation produces (3.9).

As we shall see, the coefficients K and Jn are themselves Laurent polynomials in the initial
data, meaning that the each of the linear relations (3.12) and (3.9) offers an alternative proof
of Theorem 2.1. The periodicity of the quantities (3.7) immediately implies the following.

Corollary 3.4. For all n ∈ Z the iterates of (1.4) satisfy xn ∈ Z[a, x0, x1, J0, J1, . . . , JN−2].

Note that the latter result gives a stronger version of the Laurent property for the nonlinear
recurrence (1.4). Indeed, it is clear from the formula (3.7) that Jn ∈ RN for n = 0, . . . , N − 3,
while (using (1.4) to substitute for xN ) the same formula for n = N − 2 gives

JN−2 =
xN−2
xN−1

+
x1

x0
+

a

xN−1x0

N−1
∑

i=0

xi ∈ RN .

Observe that the foregoing proof of Theorem 3.3 is not yet complete: so far we have not
shown that the coefficients K(1) and K(2) in (3.12) coincide, which is required for the relation
(3.8) to hold. Cramer’s rule applied to the linear system (3.10) produces formulae for these
coefficients as ratios of 3× 3 determinants, but it is not apparent from these formulae why
K(1) = K(2) = K. An explanation for this coincidence is postponed until the next section, but
first we present an example.

Example 3.5. For N = 3 the nonlinear recurrence (1.4) is

xn+3xn = xn+2xn+1 + a(xn+2 + xn+1), (3.15)

which is the same as Heideman and Hogan’s recurrence (1.5) for k = 1 and a = 1, and is also
a special case of the third order recurrence considered in section 5 of [13]. In accordance with
(3.12), the iterates of (3.15) satisfy xn+6 −K(xn+4 − xn+2)− xn = 0, where the first integral
K can be expressed as a Laurent polynomial in the initial data x0, x1, x2 as follows:

K = 1 +
x0

x2
+

x2

x0
+ a

(

x0

x1x2
+

x2

x0x1
+ 2

2
∑

i=0

1

xi

)

+ a2
(

1

x0x1
+

1

x1x2
+

1

x2x0

)

. (3.16)

This agrees with the result of Theorem 5.1 in [13], and with the particular integer sequence
considered in [11]: putting the initial data x0 = x1 = x2 = 1 with a = 1 into (3.16) gives the
constant value K = 14, in accordance with Proposition 1.1 for k = 1.
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The iterates of (3.15) also satisfy the homogeneous relation (3.9) with period 2 coefficients

J0 =
x2 + x0 + a

x1
, J1 =

x1x0 + x2x1 + ax0 + ax1 + ax2

x2x0
. (3.17)

4. Monodromy and the dressing chain

Any function of the periodic quantities J0, J1, . . . , JN−2 that is invariant under cyclic
permutations provides a first integral for the N -dimensional map (3.3) corresponding to
(1.4). The N − 1 quantities Ji are independent functions of x0, x1, . . . , xN−1, so a choice of
N − 1 independent cyclically symmetric functions of these Ji gives the maximum number of
independent first integrals for such a map in N dimensions, as long as it is not purely periodic.
Hence the coefficients in (3.12) should be functions of the Ji, and writing them explicitly as
such will allow us to show that K(1) = K(2), by applying monodromy arguments.

4.1. 3× 3 monodromy matrices

From the linear relation (3.9), the matrix Ψn satisfies

Ψn+1 = LnΨn, where Ln =





0 1 0
0 0 1
1 −1− Jn 1 + Jn+1



 . (4.1)

Shifting the indices N − 2 times in the above linear equation for Ψn gives the monodromy over
the period of the coefficients, such that

Ψn+p = MnΨn with Mn = Ln+N−2Ln+N−3 · · ·Ln,

where p = N − 1 is the period. From the second linear relation (3.12), the matrix Ψn also
satisfies

Ψn+p = ΨnL̂, where L̂ =





0 0 1
1 0 −K(2)

0 1 K(1)



 . (4.2)

By Remark 1, Ψn is invertible, so we can rewrite these two monodromy equations as Mn =
Ψn+pΨ

−1
n and L̂ = Ψ−1n Ψn+p, and then taking the trace of each yields

K(1) = tr L̂ = trMn for all n. (4.3)

Thus we can write the invariant K(1) in terms of the periodic functions Ji. Similarly, from
M
−1
n = ΨnΨ

−1
n+p and L̂

−1 = Ψ−1n+pΨn. we also have

K(2) = tr L̂−1 = trM−1n for all n. (4.4)

However, it is still not obvious from the form of the monodromy matrix Mn that trMn =
trM−1n , which is required for the two non-trivial coefficients in (3.12) to be the same. Before
considering the general case, we give a couple of examples.

Example 4.1. For the third order case (3.15), as in Example 3.5, we have the monodromy
matrix M0 = L1L0, where the matrix in (4.1) has period 2: Ln+2 = Ln for all n. By taking
traces it can be verified directly that K(1) = K(2) = K, where

K = trM0 = trM−10 = J0J1 − 1. (4.5)

The above identity, expressing K in terms of J0 and J1, can also be checked by comparing the
Laurent polynomials in (3.16) and (3.17).
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Example 4.2. For N = 4 the nonlinear recurrence (1.4) becomes

xn+4xn = xn+3xn+1 + a(xn+1 + xn+2 + xn+3).

The functions defined by (3.7), which appear as entries in (4.1), have period 3. They are

J0 =
x0 + x2 + a

x1
, J1 =

x1 + x3 + a

x2
, J2 =

x0x2 + x1x3 + a(x0 + x1 + x2 + x3)

x0x3
,

with Jn+3 = Jn for all n. Upon taking the trace of monodromy matrix M0 = L2L1L0, and
that of its inverse, it follows from (4.3) and (4.4) that K(1) = K(2) = K, where

K = J0J1J2 − (J0 + J1 + J2) + 1 (4.6)

is the explicit formula for K as a symmetric function of J0, J1, J2.

4.2. Connection with the dressing chain

A one-dimensional Schrödinger operator can be factorised as L = −(∂ + f)(∂ − f), where
∂ denotes the operator of differentiation with respect to the independent variable, z say, and
f = f(z). The dressing chain, as described in [19], is the set of ordinary differential equations

(fi + fi+1)
′ = f2

i − f2
i+1 + αi, (4.7)

where αi are constant parameters, and the prime denotes the z derivative. These equations
arise from successive Darboux transformations Li → Li+1 that are used to generate a sequence
of Schrödinger operators (Li); the nature of the Darboux transformation is such that each
operator is obtained from the previous one by a reordering of factors and a constant shift:

Li = −(∂ + fi)(∂ − fi) −→ Li+1 = −(∂ − fi)(∂ + fi) + αi = −(∂ + fi+1)(∂ − fi+1).

Of particular interest is the periodic case, where Li+p = Li for all i. In that case, all indices
in (4.7) should be read mod p, and this becomes a finite-dimensional system for the fi. As
noted in [19], the properties of this system depend sensitively on the parameters αi: when
∑

i αi 6= 0 the general solutions correspond to Painlevé transcendents or their higher order
analogues (see [18] and references for further details), while for

∑

i αi = 0 the solutions are of
an algebro-geometric nature, corresponding to finite gap solutions of the KdV equation; the
latter connection goes back to results of Weiss [20].
Here we are concerned with the case

∑

i αi = 0 only, so following [19] we use parameters
βi such that αi = βi − βi+1 mod p. For p odd there is an invertible transformation fi to new
coordinates, that is

Ji = fi + fi+1, i = 1, . . . , p, (4.8)

and in [19] (where the coordinates Ji are denoted gi) it was shown that in this case the
periodic dressing chain is a bi-Hamiltonian integrable system, meaning that it has a pencil
of compatible Poisson brackets together with the appropriate number of Poisson-commuting
first integrals to satisfy the requirements of Liouville’s theorem. (For p odd the transformation
(4.8) is not invertible, but there is a degenerate Poisson bracket for the dressing chain such
that it is an integrable system on a generic symplectic leaf.) A recent development was the
observation in [8] that (with all βi = 0) a combination of these compatible brackets for the
dressing chain coordinates Ji arises by reduction from the log-canonical Poisson structure for
the cluster variables in cluster algebras associated with affine A-type Dynkin quivers. In this
context, a further observation was that the linear relations between cluster variables found in
[6] (see also [1, 7, 15]), which are of the form

xn+2p − κxn+p + xn = 0, (4.9)
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have a non-trivial coefficient κ which is the generating function for the first integrals of the
dressing chain (expressed in terms of suitable variables Ji). The key to understanding these
observations is the following result, which is omitted from the published version of [8] but
appeared in the original preprint.

Lemma 4.3. If a 2× 2 monodromy matrix is defined by

M
∗ =

(

0 ζ1
1 J1

) (

0 ζ2
1 J2

)

. . .

(

0 ζp
1 Jp

)

, (4.10)

then (with indices read mod p) the trace is given by the explicit formula

trM∗ =

p
∏

i=1

(

1 + ζi
∂2

∂Ji∂Ji+1

) p
∏

n=1

Jn.

Proof. This is very similar to the proof of Theorem 2 in [19], where a Lax equation for the
dressing chain is given for a different monodromy matrix, written in terms of the variables fi.
The above identity for the trace of M∗ follows by calculating the coefficient of each monomial
in the ζj on either side of the equation, using the relations

(

0 0
1 J1

) (

0 0
1 J2

)

. . .

(

0 0
1 Jℓ

)

= J1J2 . . . Jℓ−1

(

0 0
1 Jℓ

)

and
(

0 0
1 Jj

) (

0 1
0 0

) (

0 0
1 Jk

)

=

(

0 0
1 Jk

)

,

and noting that in the latter relation the central matrix on the left is nilpotent.

Remark 2. For the period p dressing chain (4.7) with αi = βi − βi+1, the Poisson-
commuting first integrals are found in terms of the variables Ji by setting ζi = βi − λ in (4.10)
and expanding trM∗ in powers of the spectral parameter λ.

The 2× 2 monodromy matrix (4.10) also provides the key to understanding the detailed
structure of the linear relation (3.8) associated with (1.4).

Theorem 4.4. In terms of the quantities Jn defined in (3.7), the coefficient K in (3.8) is
given by the formula

K = 1 +

p
∏

i=1

(

1−
∂2

∂Ji∂Ji+1

) p
∏

n=1

Jn. (4.11)

Proof. Upon introducing the 2× 2 matrices

Φn =

(

xn xn+1

xn+p xn+p+1

)

, L
∗
n =

(

0 −1
1 J1

)

, C =

(

0 1
0 1

)

,

the inhomogeneous linear equation (3.14) implies that

Φn+1 = ΦnL
∗
n − aC. (4.12)

Seeking an appropriate inhomogeneous counterpart of (3.8), we define the matrix

M
∗
n = L

∗
nL
∗
n+1 · · ·L

∗
n+p−1,
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which (up to cyclic permutations) is a special case of the monodromy matrix M
∗ above,

obtained from (4.10) by setting ζi = −1 for all i. Now, by applying a shift to (4.12), we have

Φn+2 = (ΦnL
∗
n − aC)L∗n+1 − aC = ΦnL

∗
nL
∗
n+1 − aC(L∗n+1 + I)

(with I being the 2× 2 identity matrix), and so by induction, after a total of p− 1 shifts, we
find that

Φn+p = ΦnM
∗
n − aCKn, (4.13)

where

Kn = L
∗
n+1 · · ·L

∗
n+p−1 + L

∗
n+2 · · ·L

∗
n+p−1 + . . .+ L

∗
n+p−1 + I.

Note that the entries of L∗n, and hence those of M∗n and Kn, are all periodic with period p,
so from (4.13) it follows that

Φn+2p = Φn+pM
∗
n − aCKn = Φn(M

∗
n)

2 − aCKn(M
∗
n + I).

The latter equation can be further simplified with the use of the Cayley-Hamilton theorem,
which gives

(M∗n)
2 − κM∗n + I = 0, with κ = trM∗n,

and hence (after using (4.13) once again) we find

Φn+2p = κΦn+p − Φn − aCKn

(

M
∗
n + (1− κ)I

)

.

The (1, 1) entry of the above matrix equation yields an inhomogeneous version of (4.9), namely

xn+2p − κxn+p + xn + aJ̃n = 0, (4.14)

where the quantity J̃n is periodic with period p. We claim that this is the desired inhomogeneous
counterpart of (3.8). Indeed, applying the shift n → n+ p to (4.14) and then subtracting the
original equation gives

xn+3p − (κ+ 1)
(

xn+2p − xn+p

)

− xn = 0,

which is (3.8) with K = κ+ 1, and the formula (4.11) then follows from Lemma 4.3. This also
verifies that K(1) = K(2) in (3.12), completing the missing step in the proof of Theorem 3.3.

Remark 3. Observe that 1 is a root of the characteristic polynomial of the linear relation
(3.8), which means that this homogeneous equation is a total difference. Hence, using S to
denote the shift operator, we obtain the relation

(

S3p−1 + . . .+ S2p − κ(S2p−1 + . . .+ Sp) + Sp−1 + . . .+ S + 1
)

xn + aK̃ = 0,

where K̃ is a first integral. In the case p = N − 1 = 2, a formula for K̃ as a Laurent polynomial
in the initial data can be found in [13] (see Theorem 5.1 therein). Although we do not have
a general formula for K̃, analogous to (4.11), direct calculation shows that K̃ = J0 + J1 + 4
for p = 2, and K̃ = J0J1 + J1J2 + J2J0 + 2(J0 + J1 + J2) + 3 for p = 3. Moreover, in the cases
p = 2, 3, 4, 5 we have verified with computer algebra that K̃ is given in terms of the 3× 3
determinant (3.4) by

K̃ =
µ

a3
,

and we conjecture that this is always so.

Remark 4. The form of the inhomogeneous relation (4.14) means that the solution of the
initial value problem for (1.4) can be written explicitly using Chebyshev polynomials of the
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first and second kind with argument κ/2, that is

Tj(cos θ) = cosnθ, Uj(cos θ) =
sin(n+ 1)θ

sin θ
, where κ = 2 cos θ.

For details of the solution in the case N = 3, see Proposition 5.2 in [13].

5. Conclusions

We have shown that each of the nonlinear recurrences (1.4) fits into the framework of Lam
and Pylyavskyy’s LP algebras, implying that the Laurent property holds. Furthermore, each
recurrence is linearisable in two different ways: with a constant-coefficient homogeneous linear
relation, and with another such relation with periodic coefficients. The connection between
the first integral K in (3.8) and the Poisson-commuting first integrals of the dressing chain is
intriguing: it raises the question of whether LP algebras might admit natural Poisson and/or
presymplectic structures, analogous to those for cluster algebras [10].
The recurrences (1.5) considered by Heideman and Hogan also possess the Laurent property.

(See [12] for a more detailed discussion.) It can also be shown that, beyond the linear relation
(1.6) for a particular integer sequence, the result of Proposition 1.1 extends to arbitrary initial
data. In this case there is also an analogue of (3.9), with periodic coefficients, but with a more
complicated structure. These results will be presented elsewhere.

6. Appendix

Here we consider the particular family of integer sequences that is generated by iterating
each recurrence (1.4) with all N initial data set to the value 1, and prove the following result.

Theorem 6.1. For each N ≥ 2, the recurrence (1.4) with initial values xn = 1 for n =
0, . . . , p = N − 1 generates a sequence of integers (xn) which is symmetric in the sense that
xn = xp−n for all n ∈ Z. The first few terms are given by

xp+j = f2j p+ 1, x2p+j = f2jf2p p
2 +

(

f2j(f2p+2 + 1)− f2j−2f2p

)

p+ 1, j = 0, . . . , p. (6.1)

In general, for each k ≥ 0 the terms xkp+j for 1 ≤ j ≤ p can be written as polynomials in p
whose coefficients are themselves polynomials in Fibonacci numbers with even index.

First of all, to see why xn = xp−n, observe that the nonlinear recurrence (1.4) has two obvious
symmetries: translating n, and replacing n by −n. Combining these two symmetries, it follows
that the sequence (xp−n) satisfies (1.4) whenever the sequence (xn) does; the fact that the
initial data 1, 1, . . . , 1 is symmetric under n → p− n implies that these two sequences coincide.
The rest of the proof proceeds inductively, and relies on various identities for Fibonacci

numbers; note that the convention f0 = 0, f1 = 1 is taken for the initial Fibonacci numbers.
From the Fibonacci recurrence fn+2 = fn+1 + fn it follows that the even index terms satisfy

f2n+4 = 3f2n+2 − f2n. (6.2)

For n = 0, . . . , p− 1 the relation (1.4) is satisfied by the initial data and the first set of terms
in (6.1) by virtue of the identity

f2n+2 − f2n = f2n + f2n−2 + . . .+ f2 + 1, (6.3)

which follows from (6.2) by induction. To verify the formula for the second set of terms in
(6.1), it suffices to substitute these expressions into (1.4) with n = p, . . . , 2p− 1 and compare
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coefficients of powers of p on both sides, making use of (6.3) again, together with the identity
∣

∣

∣

∣

f2j−2 f2j
f2j f2j+2

∣

∣

∣

∣

= −1.

The fact that the latter 2× 2 determinant is a constant (independent of j) follows from (6.2),
while the value −1 is obtained immediately from f0 = 0, f±2 = ±1.
Proposition 1.2 is now seen to be a special case of Theorem 3.3, by making use of Theorem 6.1.

Indeed, from (3.8) with n = j − p for 1 ≤ j ≤ p, the above choice of initial data and the terms
in (6.1), as well as the symmetry of the sequence, yields K = (x2p+j − x−p+j)/(xp+j − xj) =
(x2p+j − x2p−j)/(xp+j − xj) = f2pp+ f2p+2 + 1− (f2j−2f2p + f2p−2j)/f2j . In order to see why
the latter expression is a constant (independent of j), and to obtain the particular form of
the coefficient K that appears in (1.7), it is enough to verify the identity f2jf2p−2 − f2j−2f2p =
f2p−2j , which is done by writing the even index Fibonacci numbers as f2n = sinhnθ/sinh θ with

θ = log
(

3+
√
5

2

)

, and using the addition formula for the hyperbolic sine.
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