882 research outputs found

    3D MHD Simulations of Planet Migration in Turbulent Stratified Disks

    Full text link
    We performed 3D MHD simulations of planet migration in stratified disks using the Godunov code PLUTO, where the disk is turbulent due to the magnetorotational instability. We study the migration for planets with different planet-star mass ratios q=Mp/Msq=M_{p}/M_{s}. In agreement with previous studies, for the low-mass planet cases (q=5×106q=5\times10^{-6} and 10510^{-5}), migration is dominated by random fluctuations in the torque. For a Jupiter-mass planet (q=Mp/Ms=103(q=M_{p}/M_{s}=10^{-3} for Ms=1M)M_{s}=1M_{\odot}), we find a reduction of the magnetic stress inside the orbit of the planet and around the gap region. After an initial stage where the torque on the planet is positive, it reverses and we recover migration rates similar to those found in disks where the turbulent viscosity is modelled by an α\alpha viscosity. For the intermediate-mass planets (q=5×105,104q=5\times10^{-5}, 10^{-4} and 2×1042\times10^{-4}) we find a new and so far unexpected behavior. In some cases they experience sustained and systematic outwards migration for the entire duration of the simulation. For this case, the horseshoe region is resolved and torques coming from the corotation region can remain unsaturated due to the stresses in the disk. These stresses are generated directly by the magnetic field. The magnitude of the horseshoe drag can overcome the negative Lindblad contribution when the local surface density profile is flat or increasing outwards, which we see in certain locations in our simulations due to the presence of a zonal flow. The intermediate-mass planet is migrating radially outwards in locations where there is a positive gradient of a pressure bump (zonal flow).Comment: Accepted for publication in Ap

    Extracellular adherence protein (Eap) from Staphylococcus aureus does not function as a superantigen

    Get PDF
    AbstractExtracellular adherence protein (Eap) from Staphylococcus aureus has been reported to have strong anti-inflammatory properties, which make Eap a potential anti-inflammatory agent. However, Eap has also been demonstrated to trigger T-cell activation and to share structural homology with superantigens. In this study, we focused on whether Eap fulfilled the definition criteria for a superantigen. We demonstrate that T-cell activation by Eap is dependent on both major histocompatibility complex class II and intercellular adhesion molecule type 1, that cellular processing is required for Eap to elicit T-cell proliferation, and that the kinetics of proliferation resemble the profile of a conventional antigen and not that of a superantigen

    A conservative orbital advection scheme for simulations of magnetized shear flows with the PLUTO code

    Get PDF
    Explicit numerical computations of super-fast differentially rotating disks are subject to the time-step constraint imposed by the Courant condition. When the bulk orbital velocity largely exceeds any other wave speed the time step is considerably reduced and a large number of steps may be necessary to complete the computation. We present a robust numerical scheme to overcome the Courant limitation by extending the algorithm previously known as FARGO (Fast Advection in Rotating Gaseous Objects) to the equations of magnetohydrodynamics (MHD). The proposed scheme conserves total angular momentum and energy to machine precision and works in Cartesian, cylindrical, or spherical coordinates. The algorithm is implemented in the PLUTO code for astrophysical gasdynamics and is suitable for local or global simulations of accretion or proto-planetary disk models. By decomposing the total velocity into an average azimuthal contribution and a residual term, the algorithm solves the MHD equations through a linear transport step in the orbital direction and a standard nonlinear solver applied to the MHD equations written in terms of the residual velocity. Since the former step is not subject to any stability restriction, the Courant condition is computed only in terms of the residual velocity, leading to substantially larger time steps. The magnetic field is advanced in time using the constrained transport method in order to preserve the divergence-free condition. Conservation of total energy and angular momentum is enforced at the discrete level by properly expressing the source terms in terms of upwind fluxes available during the standard solver. Our results show that applications of the proposed orbital-advection scheme to problems of astrophysical relevance provides, at reduced numerical cost, equally accurate and less dissipative results than standard time-marching schemes.Comment: 16 pages, 13 figures. Accepted for publication in A&

    Gender differences in the intention to get vaccinated against COVID-19: a systematic review and meta-analysis

    Get PDF
    Aim: We conducted a systematic review and meta-analysis to analyse gender differences in COVID-19 vaccination intentions. Subject and methods: PubMed, Web of Science and PsycInfo were searched (November 2020 to January 2021) for studies reporting absolute frequencies of COVID-19 vaccination intentions by gender. Averaged odds ratios comparing vaccination intentions among men and women were computed. Descriptive analyses of the studies were reported. Results: Sixty studies were included in the review and data from 46 studies (n = 141,550) were available for meta-analysis. A majority (58%) of papers reported men to have higher intentions to get vaccinated against COVID-19. Meta-analytic calculations showed that significantly fewer women stated that they would get vaccinated than men, OR 1.41 (95% CI 1.28 to 1.55). This effect was evident in several countries, and the difference was bigger in samples of health care workers than in unspecified general population samples. Conclusion: This systematic review and meta-analysis found lower vaccination intentions among women than men. This difference is discussed in the light of recent data on actual vaccination rates in different countries. Supplementary Information: The online version contains supplementary material available at 10.1007/s10389-021-01677-w

    Actin filaments in sensory hairs of inner ear receptor cells.

    Full text link

    Inner ear tissue preservation by rapid freezing: improving fixation by high-pressure freezing and hybrid methods

    Get PDF
    In the preservation of tissues in as ‘close to life’ state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40μm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues

    Sub-wavelength lithography over extended areas

    Get PDF
    We demonstrate a systematic approach to sub-wavelength resolution lithographic image formation on films covering areas larger than a wavelength squared. For example, it is possible to make a lithographic pattern with a feature size resolution of λ/[2(N+1)]\lambda/[2(N+1)] by using a particular 2M2 M-photon, multi-mode entangled state, where N<MN < M, and banks of birefringent plates. By preparing a statistically mixed such a state one can form any pixel pattern on a (N+1)2MN×(N+1)2MN(N+1) 2^{M-N} \times (N+1) 2^{M-N} pixel grid occupying a square with a side of L=2MN1L=2^{M-N-1} wavelengths. Hence, there is a trade-off between the exposed area, the minimum lithographic feature size resolution, and the number of photons used for the exposure. We also show that the proposed method will work even under non-ideal conditions, albeit with somewhat poorer performance.Comment: 8 pages, 8 figures, 1 table. Written in RevTe

    Towards NGGM: Laser Tracking Instrument for the Next Generation of Gravity Missions

    Get PDF
    The precise tracking of distance variations between two satellites in low Earth orbit can provide key data for the understanding of the Earth&rsquo;s system, specifically on seasonal and sub-seasonal water cycles and their impact on water levels. Measured distance variations, caused by local variations in gravitational field, serve as inputs to complex gravity models with which the movement of water on the globe can be identified. Satellite missions GOCE (2009&ndash;2013) and GRACE (2002&ndash;2017) delivered a significant improvement to our understanding of spatial and temporal gravity variations. Since 2018, GRACE Follow-On has been providing data continuity and features for the first time through the use of a laser interferometer as the technology demonstrator, in addition to a microwave ranging system as the main instrument. The laser interferometer provides an orders-of-magnitude lower measurement noise, and thereby could enable a significant improvement in the measurement of geoids if combined with suitable improvements in auxiliary instrumentation and Earth system modelling. In order to exploit the improved ranging performance, the ESA is investigating the design of a &lsquo;Next Generation Gravity Mission&rsquo;, consisting of two pairs of satellites with laser interferometers, improved accelerometers and improved platform performance. In this paper, we present the current design of the laser interferometer developed by us, the development status of the individual instrument units and the options available
    corecore