52,665 research outputs found

    Nature of the low temperature ordering of Pr in PrBa_2Cu_3O_(6+x)

    Full text link
    Theoretical model is presented to describe the anomalous ordered phase of Pr ions in PrBa_2Cu_3O_(6+x) below T_Pr = 12-17 K. The model considers the Pr multipole degrees of freedom and coupling between the Cu and Pr subsystems. We identify the symmetry allowed coupling of Cu and Pr ions and conclude that only an ab-plane Pr dipole ordering can explain the Cu spin rotation observed at T_Pr by neutron diffraction by Boothroyd et al. [A. T. Boothroyd et al., Phys. Rev. Lett. 78, 130 (1997)]. A substantial enhancement of the Pr ordering temperature is shown to arise from the Cu-Pr coupling which is the key for the anomalous magnetic behavior in PrBa_2Cu_3O_(6+x).Comment: 6 pages, 4 figure

    Recall of rapidly presented random chess positions is a function of skill.

    Get PDF
    A widely cited result asserts that experts’ superiority over novices in recalling meaningful material from their domain of expertise vanishes when random material is used. A review of recent chess experiments where random positions served as control material (presentation time between 3 and 10 seconds) shows, however, that strong players generally maintain some superiority over weak players even with random positions, although the relative difference between skill levels is much smaller than with game positions. The implications of this finding for expertise in chess are discussed and the question of the recall of random material in other domains is raised

    Core drill's bit is replaceable without withdrawal of drill stem - A concept

    Get PDF
    Drill bit is divided into several sectors. When collapsed, the outside diameter is forced down the drill stem, when it reaches bottom the sectors are forced outward and form a cutting bit. A dulled bit is retracted by reversal of this procedure

    Logahedra: A new weakly relational domain

    Get PDF
    Weakly relational numeric domains express restricted classes of linear inequalities that strike a balance between what can be described and what can be efficiently computed. Popular weakly relational domains such as bounded differences and octagons have found application in model checking and abstract interpretation. This paper introduces logahedra, which are more expressiveness than octagons, but less expressive than arbitrary systems of two variable per inequality constraints. Logahedra allow coefficients of inequalities to be powers of two whilst retaining many of the desirable algorithmic properties of octagons

    WMTrace : a lightweight memory allocation tracker and analysis framework

    Get PDF
    The diverging gap between processor and memory performance has been a well discussed aspect of computer architecture literature for some years. The use of multi-core processor designs has, however, brought new problems to the design of memory architectures - increased core density without matched improvement in memory capacity is reduc- ing the available memory per parallel process. Multiple cores accessing memory simultaneously degrades performance as a result of resource con- tention for memory channels and physical DIMMs. These issues combine to ensure that memory remains an on-going challenge in the design of parallel algorithms which scale. In this paper we present WMTrace, a lightweight tool to trace and analyse memory allocation events in parallel applications. This tool is able to dynamically link to pre-existing application binaries requiring no source code modification or recompilation. A post-execution analysis stage enables in-depth analysis of traces to be performed allowing memory allocations to be analysed by time, size or function. The second half of this paper features a case study in which we apply WMTrace to five parallel scientific applications and benchmarks, demonstrating its effectiveness at recording high-water mark memory consumption as well as memory use per-function over time. An in-depth analysis is provided for an unstructured mesh benchmark which reveals significant memory allocation imbalance across its participating processes

    Modeling of the heat transfer in bypass transitional boundary-layer flows

    Get PDF
    A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed
    corecore