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Abstract. Weakly relational numeric domains express restricted classes
of linear inequalities that strike a balance between what can be described
and what can be efficiently computed. Popular weakly relational do-
mains such as bounded differences and octagons have found application
in model checking and abstract interpretation. This paper introduces lo-
gahedra, which are more expressiveness than octagons, but less expres-
sive than arbitrary systems of two variable per inequality constraints.
Logahedra allow coefficients of inequalities to be powers of two whilst
retaining many of the desirable algorithmic properties of octagons.

1 Introduction

Polyhedra are used in abstract interpretation [4] and model checking real-time
[9] and hybrid systems [7]. The domain operations of general polyhedra can be
prohibitively expensive, thus there has been much recent interest in so-called
weakly relational domains that seek to balance expressivity and cost by impos-
ing restrictions on the class of inequalities that can be represented. For example,
octagons [11] restrict polyhedra [4] to inequalities of at most two variables where
the coefficients are -1, 0 or 1 and thereby obtain (at worst) cubic domain opera-
tions. Other weakly relational domains whose operations reside in low complexity
classes are pentagons [10], two variable per inequality (TVPI) constraints [17]
and bounded differences [9]. Domains that do not impose the two variable per
inequality restriction include octahedra [3] and template constraints [14].

This paper introduces a new class of weakly relational domain called logahe-
dra. A logahedron is a system of implicitly conjoined two variable inequalities
where the coefficients are constrained to be powers of two (or zero). Such coeffi-
cients naturally arise because the size of primitive types. For instance, suppose
an array of 32-bit integers was dynamically allocated with, say, malloc(n) where
n is the size of the memory block in bytes. Then an array index i is in range iff the
logahedral inequalities 0 ≤ i and 4i+4 ≤ n are satisfied. Logahedra are proposed
as a solution to two problems arising in program analysis. The first problem is
that octagons, whilst having good computational properties, are restricted in
what they can describe. The second problem is that when the coefficients of
inequalities are not constrained (as they are for octagons), for example in gen-
eral polyhedra or TVPI, the coefficients can easily become very large, requiring



multiple precision libraries for their storage and manipulation. This can be pro-
hibitively costly [16]. Logahedra address the first problem by allowing a greater
variety of constraints to be expressible than octagons, whilst retaining octagons’
good computational properties (indeed, logahedra are a true generalisation of
octagons; logahedra are strictly more expressive, with octagons being a special
case). They address the second problem by restricting the possible coefficients
of inequalities; further, since the allowable coefficients are powers of two, they
can be represented by their exponents rather than by the number itself, allowing
very large coefficients to be represented using machine integers.

Logahedra are themselves a strict subset of TVPI constraints and inherit
many of their domain operations. Yet the most important domain operation,
(full) completion, has the same complexity as for octagons hence is more efficient
than for TVPI, being (truly) cubic. The most complicated domain operation, as
with TVPI, is incremental completion. This is the operation of adding a single
constraint to an already complete system to give an updated complete system.
Incrementally adding constraints is more in tune with the needs of analysis than
full completion, therefore incremental completion is arguably the key operation.
This operation is also the most complicated and is synthesised from the way new
inequalities can be derived in the act of completing a system. This result is appli-
cable to arbitrary two variable systems, not just logahedra. The paper advances
the theory of weakly relation domains by making the following contributions:

– The class of logahedral constraints is introduced and it is argued that they
have representational advantages over TVPI constraints, whilst being more
expressive than octagons.

– A parameterised subclass of logahedra, bounded logahedra, is defined that
is a generalisation of octagons in that octagons are a special case of bounded
logahedra. Bounded logahedra are more expressive than octagons, whilst
retaining their asymptotic complexity.

– Domain operations for both logahedral and bounded logahedral constraints
are defined and algorithms for the operations are presented. In part, these
build on TVPI operations and include original approaches to completion and
abstraction that are applicable to other weakly relational domains.

– Preliminary experiments (and an example) indicate that logahedra have the
potential to significantly increase the power of analysis.

2 Logahedral Constraints

Logahedra fall between octagons [11] and TVPI [17] in that octagonal constraints
can be expressed as logahedral constraints which, in turn, can be expressed as
TVPI constraints, that are themselves two variable restrictions of polyhedral
constraints. These classes are defined over a set of (indexed) variables X:

Definition 1. Oct = {ax+ by ≤ d | x, y ∈ X ∧ a, b ∈ {−1, 0, 1} ∧ d ∈ Q}

Definition 2. Log = {ax+by ≤ d | x, y ∈ X∧a, b ∈ {−2n, 0, 2n |n ∈ Z}∧d ∈ Q}



Definition 3. TVPI = {ax+ by ≤ d | x, y ∈ X ∧ a, b, d ∈ Q}

Definition 4. Poly = {
∑|X|

i=1 aixi ≤ d | xi ∈ X ∧ ai, d ∈ Q}

Both Oct and TVPI, like Poly, are closed under variable elimination, that is, if
y ∈ X and S ⊆ Oct (respectively S ⊆ TVPI) then ∃y.S ∈ Oct (respectively
∃y.S ∈ TVPI). For instance, if S = {x− 2y ≤ 5, 3y + z ≤ 7, 5y − u ≤ 0} ⊆ TVPI
then ∃y.S can be derived by combing pairs of inequality with opposing signs for
y to obtain ∃y.S = {3x + 2z ≤ 29,−2u + 5x ≤ 25} which is indeed in TVPI.
Variable elimination (projection) is an important operation in program analysis
and an abstract domain should ideally be closed under it so as to minimise the
loss of information; Log possesses this property. Furthermore, as well as being
more expressive than Oct, Log has representational advantages over TVPI. This
makes Log a natural object for study.

2.1 Representation of Coefficients

The representational advantages of logahedra are hinted at by their name. Since
the absolute value of the coefficients are powers of two, it suffices to represent
the logarithm of the value, rather than the value itself. This allows coefficients
to be presented by their exponents in machine words, thereby avoiding the com-
putational burden of large coefficients.

As with TVPI inequalities, a logahedral inequality can be binary, that is,
involve two variables, when a 6= 0 and b 6= 0; or be unary, when either a = 0 or
b = 0 (but not both); or be constant when a = b = 0. Constant constraints are
written as either true or false. A dense representation for the binary case can
be achieved by observing that ax+ by ≤ d can be expressed as x+(b/a)y ≤ d/a
if a > 0 and −x − (b/a)y ≤ −d/a otherwise. Thus to represent ax + by ≤ d it
is sufficient to distinguish the variables x and y, represent the signs of a and
b (as two bits) and then either represent lg |b/a| and d/a or lg |b/a| and −d/a.
A unary inequality such as ax ≤ d can be expressed as x ≤ d/a if a > 0 and
−x ≤ −d/a otherwise, therefore it is not even necessary to represent a logarithm.
Henceforth, without loss of generality, all logahedra will be represented with first
coefficient of -1, 0 or 1.

2.2 Representation of Constants

Unlike TVPI, that can alternatively be defined with a, b, d ∈ Z, the constant
d is required to be rational, even without a restriction on the first coefficient.
Consider, for example, 4x− 2y ≤ 2/3. This has no equivalent logahedral repre-
sentation with an integer constant. Furthermore, rational constants are required
for closure under variable elimination. Consider eliminating y from a system such
as {x − 2y ≤ 3, x + 4y ≤ −1} which yields the single inequality 3x ≤ 5. This,
in itself, is not logahedral but the constraint can be equivalently expressed as
x ≤ 5/3 which is logahedral.



2.3 Bounded Logahedra and their Representation

The Log class contains an unbounded number of inequalities for each two vari-
able pair. The Oct class, however, is bounded since the size of the coefficients is
bounded. Therefore it is worth considering restricting the coefficients of logahe-
dra to within a bound:

Definition 5. Logk = {ax+ by ≤ d | x, y ∈ X ∧a ∈ {−1, 0, 1}∧ b ∈ Ck ∧d ∈ Q}
where Ck = {−2n, 0, 2n |n ∈ Z ∧ −k ≤ n ≤ k}, k ∈ N.

Notice that Oct = Log0. An alternative definition would restrict the first coeffi-
cient to be a power of two rather than a unit. However, it is curious to observe
that the class Log3 is not expressible with the alternative definition.

The case for Logk is further motivated by considering the inequalities required
to describe relationships between values stored in machine integers. The following
proposition states that inside a bounded box (induced by the size of the type)
the set of integer points described by a Log constraint can also be described by
a Logk constraint where k is determined by the size of the bounding box.

Proposition 1. Suppose ax + by ≤ d ∈ Log and Boxk = ([−2k, 2k − 1] ∩ Z)2.
Then there exists ax+ b′y ≤ d′ ∈ Logk+1 such that {〈x, y〉 ∈ Boxk | ax+ by ≤ d}
= {〈x, y〉 ∈ Boxk | ax+ b′y ≤ d′}

Proof. Wlog suppose c ≡ ax+ by ≤ d ∈ Log where a ∈ {−1, 1} and b 6∈ Ck+1.
Find 〈x∗, y∗〉 ∈ Z2 that maximises ax + by subject to ax + by ≤ d, −2k ≤

x ≤ 2k − 1 and −2k ≤ y ≤ 2k − 1. (This can be achieved in O(lg |b|) time [5].)
The Log constraint ax+ by ≤ d′, where d′ = ax∗ + by∗, describes the same set of
integer points in Boxk as c. Put s = sign(b), l = lg(|b|), k′ = sign(l)(k + 1) and
b′ = s2k′

. Then c′ := (ax+ b′y ≤ d′) ∈ Logk+1.
If b′ = s2k+1 then c′ adds no new integer solutions since Boxk has height

2k+1 − 1 and c′ passes through 〈x∗, y∗〉. Likewise, if b′ = s2−(k+1) then again
c′ adds no new solutions since Boxk has width 2k+1 − 1 and c′ passes through
〈x∗, y∗〉. The result follows.

The Logk class has 4(2k+ 1) binary and 4 unary inequalities for each pair of
variables, therefore, for fixed k, the domain is bounded. The force of the proposi-
tion is that for an signed integer representation of, say, 32 bits, it is sufficient to
restrict attention to Log33. For unsigned integers analogous results hold. Impor-
tantly, observe that for any given Boxk, the domain Logk+1 retains closure under
variable elimination. This is because, by proposition 1, any inequality (obtained
by combining a pair of inequalities) that falls outside Logk+1 can be replaced
with another drawn from Logk+1 without loss of information. A final observation
that is potentially exploitable is that for a given Boxk and a pair of coefficients,
there is a maximum value for the constant beyond which the inequality does not
restrict the box. For example, x+ y ≤ d is vacuous if 2k+1 − 2 ≤ d.



3 Worked example

This section contains an example to demonstrate the use of logahedra in value
range analysis. It serves to illustrate the domain operations required, for which
definitions and algorithms will be given in the next section. In addition, the
example illustrates the expressivity of logahedra versus octagons.

In the following C program, read value() reads a value from a file. The objec-
tive of the analysis is to verify the safety of the array access in line 5, no matter
what values are read. To this end, the set of 〈x, y〉 values that can arise imme-
diately after executing lines (1) . . . (6) are over-approximated by the logahedra
P1, . . . , P6. Each of the these logahedra are defined by a separate equation. The
set P ′

2 over-approximates the set of 〈x, y〉 values occurring immediately before
line 2. P ′

2 differs from P2 in that P2 assumes that the loop condition holds. The
updates at lines (3), (4) and (6) are modelled as translations. Since the value
read value() is not known at analysis time, the values of 〈x, y〉 at line (5) can be
either that at line (3) or (4). P5 is thus defined as the join of P3 and P4. P ′

2 is
also formulated as the join of P1 and P6, but also applies widening, O.

(1) int x = 0, y = 0, array[8]; P1 = {〈0, 0〉}
(2) while (x < 4) P ′

2 = P ′
2O(P1 t P6) P2 = P ′

2 u {〈x, y〉 | x < 4}
{ if (read value() == 0)

(3) y = y+2; P3 = {〈x, y + 2〉 | 〈x, y〉 ∈ P2}
else

(4) y = y+1; P4 = {〈x, y + 1〉 | 〈x, y〉 ∈ P2}
(5) array[y] = y; P5 = P3 t P4

(6) x = x+1; } P6 = {〈x+ 1, y〉 | 〈x, y〉 ∈ P5}

Solutions to the equations, or at least upper-approximations to them, can
be found by repeatedly applying the equations until a fixpoint is reached. As in
other polyhedral analyses [4], widening is introduced to enforce convergence since
P1, P

′
2, . . . , P6 grow as the equations are reapplied. To obtain convergence, it is

sufficient to put Q1OQ2 = Q1 tQ2 if Q1 and Q2 differ in dimension; otherwise
Q1OQ2 is defined as the (non-redundant) inequalities of Q1 that hold for Q2.
This removes unstable bounds from Q1 whilst ensuring Q1 tQ2 ⊆ Q1OQ2 [6].

The diagrams in Fig. 1 show how P1, P
′
2, . . . , P6 develop during the fixpoint

calculation from their initial values of ∅. Diagram (a) shows how P1 is changed by
the first equation; thereafter P1 is stable. Initially P6 = ∅ so that P1 t P6 = P1.
Since P ′

2 = ∅ differs in dimension from P1, the second equation assigns P1 to P ′
2.

Diagram (c) illustrates P5, which is a line segment, that is the join of P3 and
P4 which are themselves translations of P2. P6 in diagram (d) is a translation
of P5. When reapplying the second equation, P ′

2 and P1 t P6 again differ in
dimension so that P ′

2 is updated to the solid triangle depicted in diagram (e).
Diagrams (f) and (g) illustrate the effect of translations and a join, P5, and
another translation, P6. On the third application of the second equation, P ′

2 and
P1 t P6 are 2 dimensional, hence P ′

2 is updated to just retain the two stable
inequalities, as illustrated in (i). Diagram (j) shows how the loop condition is
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Fig. 1. Logahedra P1, P
′
2, P2, P5 and P6 (P3 and P4 are omitted)
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Fig. 2. Octagons P1, P
′
2, P2, P5 and P6 (P3 and P4 are omitted)

reinserted. P ′
2 remains unchanged when its equation is applied a fourth time. The

〈x, y〉 values summarised by P5 in diagram (k) show that y can possibly take a
value of 8, indicating a possibly erroneous array access. The analysis shows that
enlarging the array by one element alleviates the problem. For this example, the
analysis would terminate without widening, though this is not always so.

Fig. 2 repeats the analysis with octagons. Diagrams (e) and (h) show that the
upper bound on y is unstable since the domain cannot express y ≤ 2x. Hence, in
diagram (i), P ′

2 loses crucial information on the maximal values of y. Moreover,
if widening was not applied, then the upper bound of y would grow indefinitely.
Thus the loss of information cannot be remedied by more sophisticated widening.
Curiously, the example was not manufactured to show the benefits of logahedra,
but rather to illustrate polyhedral analysis to a lay audience.



4 Logahedral Domain Operations

This section details the domain operations previously introduced. These operate
on finite sets of inequalities, such as ℘f (Log) and ℘f (Logk), where ℘f (S) denote
the set of finite subsets of a given set S. The entailment ordering on ℘f (Poly),
and its subdomains ℘f (TVPI), ℘f (Log) and ℘f (Logk), is given by I1 |= I2 iff
any assignment that satisfies each inequality c1 ∈ I1 also satisfies each c2 ∈ I2.
Equivalence is defined as I ≡ I ′ iff I |= I ′ and I ′ |= I.

Example 1. If I = {x−2y ≤ 7, y ≤ 2} and I ′ = {x ≤ 12} then I |= I ′ since every
assignment to x and y satisfying I also satisfies I ′. But I ′ 6|= I. If c := 3x ≤ 2 and
c′ := x ≤ 2/3 then {c}≡{c′} and indeed c and c′ are multiples of one another.

4.1 Completion

The algorithms for many operations on logahedra (and other weakly relational
domains) require implied inequalities to be made explicit. The process of infer-
ring all implied constraints is called completion and is the dominating compu-
tational expense in the operations of which it forms a part. Therefore a clear
understanding of how completion is applied, along with efficient algorithms, is
essential. Completion is formalised in terms of syntactic projection:

Definition 6. If Y ⊆ X then syntactic projection onto Y is defined πY (S) =
{c ∈ S | vars(c) ⊆ Y }, where vars(c) is the set of variables occurring in c.

Definition 7. The set of logahedral inequalities I ⊆ Log is complete iff for all
c ∈ Log it holds that if I |= c then πvars(c)(I) |= c.

Example 2. Let I0 = {x − y ≤ 0, 2x + y ≤ 1}. I0 is not complete because
I0 |= x ≤ 1/3 but π{x}(I0) = ∅ 6|= x ≤ 1/3. Put I1 = I0∪{x ≤ 1/3}. The constant
constraint true does not compromise completion since π∅(I1) = ∅ |= true.

Example 3. Suppose I0 = {x − y ≤ −1, y − z ≤ −1, z − x ≤ −1}. I0 is not
complete since π{x,z}(I0) 6|= x − z ≤ −2 and π{x,y}(I0) 6|= y − x ≤ −2. Put
I1 = I0 ∪{x− z ≤ −2, y−x ≤ −2}. I1 is still not complete since π∅(I1) |= false
(I0 is unsatisfiable). Put I2 = I1 ∪ {false}. Then I2 is complete.

The action of deriving implied inequalities, or computing resultants to use
the terminology of Nelson [12], is formalised below:

Definition 8. If c = ax + by ≤ d, c′ = a′x + b′z ≤ d′ and a.a′ < 0 then
result(c, c′, x) = |a′|by + |a|b′z ≤ |a′|d+ |a|d′ otherwise result(c, c′, x) = ⊥.

The operation result(c, c′, x) is analogously defined when c := ax ≤ d or
c′ := a′x ≤ d′. Note that it is necessary to stipulate which variable is eliminated
because a single pair of inequalities may possess two resultants, as is illustrated
by the pair c := x+ y ≤ 1, c′ := −2x− 3y ≤ 1 for which result(c, c′, x) = −y ≤ 3
and result(c, c′, y) = x ≤ 4. The resultant operator lifts to sets of inequalities:

Definition 9. If I1, I2 ⊆ TVPI then

result(I1, I2) = {c | ci ∈ Ii ∧ x ∈ vars(c1) ∩ vars(c2) ∧ c = result(c1, c2, x) 6= ⊥}



Full completion Completing a set of inequalities I [17] amounts to repeat-
edly augmenting I with result(I, I) until an I ′ is obtained such that no further
(non-redundant) inequalities can be added to πY (I ′) for any Y ⊆ X. During
completion, the computation of resultants is interleaved with the removal of
redundant inequalities. An inequality c is considered to be redundant in I iff
πvars(c)(I) \ {c} |= c, that is, c is redundant in its syntactic projection πvars(c)(I).
To remove such constraints from I, the existence of an operator filterY (I) = I ′ is
assumed for each Y ⊆ X such that |Y | ≤ 2. The operator is assumed to satisfy
the three conditions that I ′ ⊆ I, I ′ ≡ I and I ′′ 6≡ I for all I ′′ ⊂ I ′. Such an
operator can be constructed straightforwardly, and resides in O(|I|) when I is
ordered [8, section 2]. With filterY in place, it is possible to filter an entire system
I ⊆ Log by computing filter(I) = ∪{filterY (πY (I)) | Y ⊆ X ∧ |Y | = 2}.

Definition 10. The (full) completion operator complete : ℘(Log) → ℘(Log) is
defined: complete(I) = ∪i≥0Ii where I0 = I and Ii+1 = filter(Ii ∪ result(Ii, Ii)) .

Nelson [12], working over TVPI, used a divide and conquer argument to bound
the number of iterations that need be computed before stability is achieved:

Lemma 1. complete(I) = Im where m = dlg(|X|)e and Im is defined as above.

This result becomes more intruiging when the domain is Logk. Completion
can be calculated in a semi-naive fashion by defining I0 = I and δ0 = I and com-
puting Ii+1 = filter(Ii ∪ result(δi, Ii)) and δi+1 = Ii+1 \ Ii for i ∈ [0,m− 1]. Since
|∪m

i=0 δi| is in O(|X|2) it follows that the cumulative running time of result(δi, Ii)
is O(|X|3). Since each invocation of filter resides in O(|X|2) and it is called m−1
times, it follows that the running time of completion is O(|X|3). Hence, like Oct,
but unlike TVPI, Logk comes with a (full) completion operation that resides in
O(|X|3). It is conceivable that this result extends to other subclasses of TVPI
that also retain closure under variable elimination.

Incremental completion During analysis inequalities are encountered one by
one. Thus an important addition to full completion is incremental completion
that takes a complete system, augments it with an additional inequality and
returns the completion of the augmented system. Such an algorithm has been
proposed for TVPI [15, Algorithm 7], together with a sketched correctness proof.
Given the importance of completion, the following proposition, whose proof is
given in [8], provides a rigorous foundation for an incremental algorithm.

Proposition 2. If c′ ∈ Log, I ⊆ Log is complete and c ∈ complete(I ∪ {c′})
then one of the following holds:

– c ∈ I ∪ {c′}
– c ∈ result(c′, c0) where c0 ∈ I
– c ∈ result(result(c′, c0), {c1}) where c0, c1 ∈ I



I∪{c′} can thus be completed by computing I2 = filter(I1∪result(I1\{c′}, I1\I))
where I1 = filter(I ∪ {c′} ∪ result(I, {c′})). Nelson showed that if J1, J2 ⊆ TVPI
where vars(J1) = {x, y} and vars(J2) = {y, z} then |result(J1, J2)| ≤ 2|J1|+2|J2|
[12, section 3]. It follows that |I1| ≤ 3|I|+3 and |I2| ≤ 13|I|+13, thus although
computing I2 for Log takes O(|I|2) time it requires O(|I|) space overall. For
Logk with fixed k, computing I1 and I2 both reside in O(|X|2). This squares
with incremental closure for octagons which is also in O(|X|2).

4.2 Entailment

The value of completeness is that it simplifies other operations. To illustrate,
consider the problem of detecting if a fixpoint has been reached, that is, deciding
whether I1 |= I2 for I1, I2 ∈ ℘f (Log). Suppose I1 is complete. If false ∈ I1 then
it follows I1 |= I2. Otherwise I1 |= I2 iff πY (I1) |= πY (I2) for all Y ⊆ X and
|Y | = 2. Moreover, recall that inequalities ax+by ≤ d are maintained in the form
a ∈ {−1, 0, 1} and suppose b ∈ {−1, 1} if a = 0. Then the planar entailment check
πY (I1) |= πY (I2) can be decided by testing filterY (πY (I1) ∪ πY (I2)) = πY (I1).

4.3 Variable Elimination

Variable elimination (projection) is required to remove out of scope variables,
and all information pertaining to them, from a logahedral abstraction. Fourier-
Motzkin can be applied to eliminate a variable x from I ∈ ℘f (Log) which
amounts to computing ∃x.I = ∪{c | c = result(c1, c2, x) ∧ c1, c2 ∈ I ∧ c 6= ⊥}.
However if I is complete then ∃x.I = ∪{πY (I) | Y ⊆ X \ {x} ∧ |Y | ≤ 2}.
If I were incomplete then ∃x.I may lose some information as is witnessed by
I = {w − x ≤ 0, x − y ≤ 0}. Then ∪{πY (I) | Y ⊆ X \ {x} ∧ |Y | ≤ 2} = ∅ yet
∃x.I |= w − y ≤ 0.

Projection also provides a way to realise translations induced by assignments
of the form x = x+c where c ∈ Z. If I describes the state prior to the assignment,
then the state after is described by ∃x′.({x = x′} ∪ ∃x.(I ∪ {x′ = x+ c})).

4.4 Abstraction

This section explains how to approximate a finite set of arbitrary Poly constraints
by a finite set of Log constraints. Abstraction is employed as a component of join
but is also used to translate program statements, for example, loop conditions,
into logahedral inequalities. Approximation has two stages: projection onto pla-
nar sets of TVPI constraints and relaxation of these to logahedral constraints.
Consider the latter step first, and suppose I ⊆ TVPI is finite and that vars(I) ⊆ Y
where |Y | = 2. Suppose I = {c0, ..., cn−1} is non-redundant and ordered by ori-
entation. This can be achieved in O(|I| lg |I|) time. Wlog each ci is assumed to
take the form aix+biy ≤ di where ai ∈ {−1, 0, 1}. Let c1∠c2 be a predicate that
holds when a1b2 − a2b1 < 0, that is, that c1 is oriented before c2 in a clockwise
relative order by angle. Suppose also that c−1 = cn−1 and cn = c0. If ci and ci+1



do not intersect at a vertex let pi = ⊥, otherwise let pi = (ψi, φi) be this vertex,
which can be calculated in constant time. If bi = 0 then put li = ui = 0, other-
wise define li = sign(bi)2blg(|bi|)c and ui = sign(bi)2dlg(|bi|)e. For each i ∈ [0, n−1]
put c′i = ⊥ if pi−1 = ⊥ otherwise define

c′i =
{
aix+ uiy ≤ aiψi−1 + uiφi−1 if ai =sign(bi)
aix+ liy ≤ aiψi−1 + liφi−1 if ai 6=sign(bi)

Likewise if pi = ⊥ put c′′i = ⊥ otherwise define

c′′i =
{
aix+ liy ≤ aiψi + liφi if ai =sign(bi)
aix+ uiy ≤ aiψi + uiφi if ai 6=sign(bi)

The ai = sign(bi) test determines whether the inequalities resulting from the
upper and lower approximations of |bi| support pi−1 or pi. Some of the logahedral
constraints c′i, c

′′
i may be too strong in that I 6|= c′i or I 6|= c′′i and these, with the

⊥ constraints, are filtered out to abstract I as follows:

Definition 11. Let αY (I) = {c′i | c′i 6= ⊥ ∧ ci−1∠c′i} ∪ {c′′i | c′′i 6= ⊥ ∧ c′′i ∠ci+1}
where c′i, c

′′
i are defined as above for finite I ⊆ TVPI, vars(I) ⊆ Y and |Y | = 2.

Note that the filtering test amounts to an O(1) orientation check. The angular
test guarantees that the retained inequalities are supporting.

Example 4. The example illustrates the approximation of two constraints from
a larger system I. Suppose ci−1 := −x ≤ 0, ci := −x + (3/2)y ≤ 0, ci+1 :=
−x + (5/2)y ≤ 2 and pi+1 = ⊥. The logahedral approximation is illustrated
in Fig. 3. Observe pi−1 = (0, 0) and pi = (3, 2). Since li = 2blg(3/2)c = 1,
ui = 2dlg(3/2)e = 2, ai 6= sign(bi), pi−1 6= ⊥ and pi 6= ⊥ it can be seen that
c′i := −x + y ≤ 0 and c′′i := −x + 2y ≤ 1. Moreover, since li+1 = 2blg(5/2)c = 2,
ui+1 = 2dlg(5/2)e = 4, ai+1 6= sign(bi+1), pi 6= ⊥ and pi+1 = ⊥ it follows
c′i+1 := −x+ 2y ≤ 1 and c′′i+1 := ⊥.

Now suppose instead, ci+1 := −x+(7/4)y ≤ 1/2, which preserves pi = (3, 2).
Then I 6|= c′′i and c′′i is not an approximating constraint. But c′′i ∠ci+1 does not
hold since (−1.7/4)− (−1.2) > 0, hence c′′i 6∈ αY (I). Likewise c′i+1 6∈ αY (I).

Although αY is partial, it can be used to abstract arbitrary TVPI systems:

Definition 12. The abstraction map α : ℘f (TVPI) → ℘f (Log) is given by
α(I) = ∪{αY (∃Y.I) | Y ⊆ X ∧ |Y | = 2}

In the above ∃Y.I denotes project I onto Y , that is, the repeated application
of Fourier-Motzkin to elimination of all variables x ∈ X \ Y from I. However,
if I is complete then α(I) = ∪{πY (I) | Y ⊆ X ∧ |Y | = 2}. Interestingly, α can
be immediately lifted to α : ℘f (Poly) → ℘f (Log) since if I is a finite set then
∃Y.I is a finite set. The symbol α hints at the existence of a Galois connection
between 〈℘f (Poly), |=〉 and 〈℘f (Log), |=〉, and indeed α is monotonic. But such
a structure can only be obtained by quotienting ℘f (Poly) and ℘f (Log) by ≡ to
obtain posets. The upper adjoint of α is the identity.
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Fig. 3. Approximation with logahedral constraints

To abstract the inequalities I or I ∪ Boxk to Logk put c′i := sign(bi)y ≤
sign(bi)φi−1 and c′′i := aix+ sign(bi)2ky ≤ aiψi + sign(bi)2kφi if ai = sign(bi) and
k < dlg(|bi|)e. Likewise, if blg(|bi|)c < −k then put c′i := aix + sign(bi)2−ky ≤
aiψi−1 + sign(bi)2−kφi−1 and c′′i := aix ≤ aiψi. Similarly for ai 6= sign(bi).

4.5 Meet and Abstraction

Meet over 〈℘f (Log), |=〉 can be defined by [I1]≡ u [I2]≡ = [I1 ∪ I2]≡. Thus, meet
reduces to set union when a class [I]≡ is represented by a set I. Henceforth
quotienting will be omitted, for brevity, and to reflect implementation.

A less trivial problem is that of computing α(I1∪I2) where I1 ∈ ℘f (Log) and
I2 ∈ ℘f (Poly). This arises as a special case when a statement is encountered, such
as a loop condition x ≤ y+z or an assignment x = y+z, that cannot be expressed
logahedrally. If these statements are described respectively by I2 = {x ≤ y + z}
and I2 = {y+z ≤ x, x ≤ y+z}, and I1 is a logahedral description of the program
state, then the subsequent state is described by α(I1 ∪ I2). Thus, in an analysis,
α(I1 ∪ I2) performs the role of meet when I2 is not logahedral.

This problem has been tackled using linear programming [15]. To illustrate,
suppose I2 = {c′} where c′ :=

∑n
k=1 a

′
kxk ≤ d′. Let i, j ∈ [1, n] where i 6= j

and minimise
∑

k 6=i,k 6=j a
′
kxk subject to I1 and c′. If a minimum di,j exists then

it follows I1 ∪ {c′} |= a′ixi + a′jxj ≤ d′ − di,j . TVPI inequalities found this way
are added to I1. An alternative and potentially more precise approach, which
is applicable to both TVPI and logahedra, is based on extending the resultant
operator to polyhedral inequalities in the following fashion:

Definition 13. If c := aixi + ajxj ≤ d ∈ TVPI, c′ :=
∑n

k=1 a
′
kxk ≤ d′ ∈ Poly,

a′j 6= 0 and ai.a
′
i < 0 then result(c, c′, xi) = (|a′i|aj + |ai|a′j)xj +

|ai|
∑

k 6∈{i,j} a
′
kxk ≤ |a′i|d+ |ai|d′ otherwise result(c, c′, xi)=⊥.

The a′j 6= 0 condition ensures |vars(result(c, c′, xi))| < |vars(c′)|. Thus if c′ is
ternary then result(c, c′, xi) is either binary or undefined. The partial result map
can be lifted to a total map result(I1, I2) for I1 ⊆ TVPI and I2 ⊆ Poly by analogy
with definition 9. With this in place, an operator extend(I1, I2) is introduced,
designed so that α(I1 ∪ I2) |= extend(I1, I2).



Definition 14. The map extend : ℘f (TVPI)× ℘f (Poly) → ℘f (TVPI) is defined
extend(I, δ) = ∪i≥0Ii where I0 = complete(I ∪ (δ ∩ TVPI)), δ0 = δ \ TVPI,
Ri+1 = result(Ii, δi), Ii+1 = complete(Ii∪ (Ri+1∩TVPI)) and δi+1 = Ri+1 \Ii+1.

If δ is comprised of ternary constraints, which is the dominating case [15],
then result is applied once. If desired, incremental closure can be used to com-
pute complete(Ii ∪ (Ri+1 ∩ TVPI)), since proposition 2 extends to TVPI [8]. If
extend(I, δ) is not logahedral, then α must subsequently be applied.

Example 5. Consider augmenting I = {x − y ≤ 0,−x + y ≤ 0} with c′ :=
x−2y+z ≤ 0. Then I0 = I and δ0 = {c′}. Thus R1 = result(I0, δ0) = {y+z ≤ 0}
whence δ1 = ∅ and I1 = complete(I0 ∪ R1) = I ∪ {y + z ≤ 0, x + z ≤ 0}. These
inequalities cannot be inferred with the linear programming technique of [15].

Example 6. Let I = {w − x ≤ 0, y − z ≤ 0} and c′ := w + x+ y + z ≤ 1. Then
I0 = complete(I) = I and δ0 = {c′}. Thus R1 = result(I0, δ0) = {2w+ y+ z ≤ 1,
x+w+2y ≤ 1}, I1 = I0 and δ1 = R1. Next R2 = result(I2, δ1) = {2w+2y ≤ 1},
I2 = complete(I1 ∪R2) = I1 ∪R2 = I ∪ {w + y ≤ 1/2} and δ2 = ∅.

4.6 Join

Join is required to merge abstractions on different paths, as is shown with P5

in section 3. If quotienting is omitted, then join over ℘f (Log) can be defined
I1tI2 = ∪{∃Y.I1tY ∃Y.I2 | Y ⊆ X∧|Y | = 2} where J1tY J2 = αY (J1∨J2) and
∨ is join (planar convex hull) for TVPI [15]. Join also benefits from completeness
since if Ii is complete then ∃Y.Ii = πY (Ii). The TVPI operation ∨ is O(n lg n)
where n = |J1|+ |J2|, hence the overall cost of t is dominated by completion.

With u and t thus defined, 〈℘f (Log), |=,u,t〉 forms a lattice. Furthermore,
Logk has additional structure since Ck is finite (see definition 5). In particular,
if I ⊆ Logk then there exists a finite K ⊆ I such that I ≡ K. As a consequence
〈℘f (Logk), |=,u,t〉 is a complete lattice.

Widening [6] is often applied with join in order to enforce termination. As
has been explained elsewhere [11, 15], care must be taken not to reintroduce in-
equalities through completion that have been deliberately discarded in widening.

5 Logahedra versus Octagons and TVPI

Logahedra are theoretically well motivated and their representational advan-
tages, as a generalisation of octagons, are of interest. To provide preliminary
data on the power of bounded logahedra two sets of experiments were performed.

In the first experiment sets of integer points, {〈x, y〉 | x, y ∈ [−32, 32]} were
randomly selected. For each set, between 1 and 63 points were generated. The
best Oct = Log0 and Logk (for k ∈ [1, 5]) abstractions were computed and com-
pared with the best TVPI abstraction. The comparison is based on the number
of integer points in the abstractions. For example, one set of 23 points had 7
extreme points. The Oct, the five Log and the TVPI descriptions were satisfied



Logk

vertices sets Oct k=1 k=2 k=3 k=4 k=5

1 2044 0.000 0.000 0.000 0.000 0.000 0.000
2 2958 82.640 43.941 30.675 26.396 25.024 24.481
3 5923 1.874 0.998 0.700 0.611 0.584 0.576
4 10423 0.557 0.294 0.195 0.163 0.153 0.149
5 14217 0.352 0.192 0.125 0.100 0.092 0.089
6 13550 0.276 0.152 0.097 0.075 0.067 0.064
7 9058 0.234 0.131 0.081 0.061 0.054 0.051
8 4345 0.205 0.115 0.071 0.053 0.046 0.043
9 1508 0.188 0.105 0.064 0.047 0.040 0.038

10 398 0.171 0.096 0.058 0.042 0.035 0.033
11 64 0.165 0.095 0.054 0.037 0.031 0.029
12 6 0.179 0.107 0.06 0.045 0.038 0.036

Table 1. Precision comparison of Oct and Logk against TVPI on random data

by 3221, 3027, 2881, 2843, 2835, 2819, 2701 integer points. Thus the precision
loss incurred by Oct over TVPI is (3321−2701)/2701 = 0.230. Likewise the losses
for Log relative to TVPI are 0.121, 0.067, 0.053, 0.050 and 0.044. This was done
for 64K sets and the results are summarised in Table 1. The table presents the
mean precision loss where the sets are grouped by their number of vertices.

The data reveals that describing exactly two points is by far the most in-
accurate scenario for Oct and Logk; if the angle between the points is suitably
acute then the TVPI constraints are satisfied by just the two points whereas the
Oct and Logk constraints can be satisfied by a band of integral points. Precision
loss decreases beyond this two point case. Enlarging the sample space does not
noticeably effect the relative precision loss other than accentuating the two point
case. Observe that the relative precision loss declines as k increases, suggesting
that logahedra can offer a significant precision improvement over octagons.

The second set of experiments compares the abstractions of two variable
projections of the results of a polyhedral analysis tightened to integer points
for a series of benchmarks [1, 2, 13]. As in the first experiment, comparisons are
made between the number of points in the TVPI, Oct and Logk abstractions.
Table 2 details benchmarks, their number of variables, the pair of variables in
the projection, the number of integer points in the TVPI abstraction and the
number of additional points for Oct and Logk abstractions. Benchmarks and
projections where Oct and TVPI give the same abstraction are omitted from the
table. This was the case for the additional 12 programs in the benchmark suite.

The data illustrates the power of octagons, with the majority of two vari-
able projections being octagonal (indeed, many of these were intervals). It also
illustrates that there are cases when non-octagonal constraints occur, with (as
in the first experiment) Logk precision improving as k increases.

Together, the results motivate further study. The random data demonstrates
that logahedra have the potential to deliver precision gains over octagons, how-



Logk

fixpoint vars project Oct k=1 k=2 k=3 k=4 k=5 TVPI

cars.inv 5 (4, 5) 312 234 78 54 54 54 3640
efm1.inv 6 (3, 6) 1 0 0 0 0 0 128
heap.inv 5 (1, 2) 1056 0 0 0 0 0 33
heap.inv 5 (3, 4) 465 0 0 0 0 0 1055
heap.inv 5 (3, 5) 465 0 0 0 0 0 1055
robot.inv 3 (1, 2) 528 0 0 0 0 0 1089

scheduler-2p.invl1 7 (3, 6) 135 120 90 30 18 18 180
scheduler-2p.invl1 7 (4, 6) 115 100 70 20 12 12 260
scheduler-2p.invl1 7 (6, 7) 135 120 90 30 18 18 180
scheduler-2p.invl2 7 (4, 6) 189 168 126 42 26 26 245
scheduler-2p.invl2 7 (6, 7) 90 80 60 20 12 12 215
scheduler-3p.invl1 10 (4, 9) 264 198 66 45 45 45 390
scheduler-3p.invl1 10 (9, 10) 264 198 66 45 45 45 390
scheduler-3p.invl3 10 (4, 8) 312 234 78 54 54 54 455
scheduler-3p.invl3 10 (8, 9) 144 108 36 24 24 24 405
scheduler-3p.invl3 10 (9, 10) 534 128 128 128 128 128 1725

see-saw.inv 2 (1, 2) 990 231 110 110 110 110 2454
swim-pool-1.inv 9 (4, 6) 62 61 59 55 47 31 4162

Table 2. Precision comparison of Oct and Logk against TVPI on analysis data

ever, the analysis data adds a note of caution. It is not surprising that many
program invariants can be described by intervals, nor that many of the remainder
are octagonal. The data (and the example in section 3) shows that the descriptive
power of logahedra can improve analysis, leaving open the question of whether
the additional cost (a higher constant in the complexity) pays for itself with
improved accuracy. The answer to this question is in part application specific.

6 Conclusion

This paper has introduced logahedra, a new weakly relational abstract domain. A
variant of logahedra, bounded logahedra Logk, where k is the maximum exponent
is also introduced. Logahedra lie strictly between octagons and TVPI in terms
of expressive power, with octagons forming a special case, Oct = Log0. Bounded
logahedra retain the good computational properties of octagons, whilst being
less restrictive. The theory for the abstract domain has been given, along with
algorithms for each domain operation. Logahedra have the further advantage
that their variable coefficients can be represented by their exponents, mitigating
the problem of large coefficients that arise when using polyhedra or TVPI. A
preliminary investigation into the expressive power of logahedra, plus a worked
example, suggests that they can lead to more accurate analysis, but cautions that
many invariants can be described using intervals and octagons. Future work will
further investigate the application of logahedra in verification.
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