341 research outputs found

    Protein composition of interband regions in polytene and cell line chromosomes of Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite many efforts, little is known about distribution and interactions of chromatin proteins which contribute to the specificity of chromomeric organization of interphase chromosomes. To address this issue, we used publicly available datasets from several recent Drosophila genome-wide mapping and annotation projects, in particular, those from modENCODE project, and compared molecular organization of 13 interband regions which were accurately mapped previously.</p> <p>Results</p> <p>Here we demonstrate that in interphase chromosomes of <it>Drosophila </it>cell lines, the interband regions are enriched for a specific set of proteins generally characteristic of the "open" chromatin (RNA polymerase II, CHRIZ (CHRO), BEAF-32, BRE1, dMI-2, GAF, NURF301, WDS and TRX). These regions also display reduced nucleosome density, histone H1 depletion and pronounced enrichment for ORC2, a pre-replication complex component. Within the 13 interband regions analyzed, most were around 3-4 kb long, particularly those where many of said protein features were present. We estimate there are about 3500 regions with similar properties in chromosomes of <it>D. melanogaster </it>cell lines, which fits quite well the number of cytologically observed interbands in salivary gland polytene chromosomes.</p> <p>Conclusions</p> <p>Our observations suggest strikingly similar organization of interband chromatin in polytene chromosomes and in chromosomes from cell lines thereby reflecting the existence of a universal principle of interphase chromosome organization.</p

    Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic genomes are organized in extended domains with distinct features intimately linking genome structure, replication pattern and chromatin state. Recently we identified a set of long late replicating euchromatic regions that are underreplicated in salivary gland polytene chromosomes of <it>D. melanogaster</it>.</p> <p>Results</p> <p>Here we demonstrate that these underreplicated regions (URs) have a low density of <it>P</it>-<it>element </it>and <it>piggyBac </it>insertions compared to the genome average or neighboring regions. In contrast, <it>Minos</it>-based transposons show no paucity in URs but have a strong bias to testis-specific genes. We estimated the suppression level in 2,852 stocks carrying a single <it>P</it>-<it>element </it>by analysis of eye color determined by the mini-<it>white </it>marker gene and demonstrate that the proportion of suppressed transgenes in URs is more than three times higher than in the flanking regions or the genomic average. The suppressed transgenes reside in intergenic, genic or promoter regions of the annotated genes. We speculate that the low insertion frequency of <it>P-elemen</it>ts and <it>piggyBac</it>s in URs partially results from suppression of transgenes that potentially could prevent identification of transgenes due to complete suppression of the marker gene. In a similar manner, the proportion of suppressed transgenes is higher in loci replicating late or very late in Kc cells and these loci have a lower density of <it>P-elements </it>and <it>piggyBac </it>insertions. In transgenes with two marker genes suppression of mini-<it>white </it>gene in eye coincides with suppression of <it>yellow </it>gene in bristles.</p> <p>Conclusions</p> <p>Our results suggest that the late replication domains have a high inactivation potential apparently linked to the silenced or closed chromatin state in these regions, and that such inactivation potential is largely maintained in different tissues.</p

    Effect of electron irradiation on vortex dynamics in YBa_2Cu_3O_{7-x} single crystals

    Full text link
    We report on drastic change of vortex dynamics with increase of quenched disorder: for rather weak disorder we found a single vortex creep regime, which we attribute to a Bragg-glass phase, while for enhanced disorder we found an increase of both the depinning current and activation energy with magnetic field, which we attribute to entangled vortex phase. We also found that introduction of additional defects always increases the depinning current, but it increases activation energy only for elastic vortex creep, while it decreases activation energy for plastic vortex creep.Comment: 4 pages, 3 figures, submited to Phys. Rev.

    Identical Functional Organization of Nonpolytene and Polytene Chromosomes in Drosophila melanogaster

    Get PDF
    Salivary gland polytene chromosomes demonstrate banding pattern, genetic meaning of which is an enigma for decades. Till now it is not known how to mark the band/interband borders on physical map of DNA and structures of polytene chromosomes are not characterized in molecular and genetic terms. It is not known either similar banding pattern exists in chromosomes of regular diploid mitotically dividing nonpolytene cells. Using the newly developed approach permitting to identify the interband material and localization data of interband-specific proteins from modENCODE and other genome-wide projects, we identify physical limits of bands and interbands in small cytological region 9F13-10B3 of the X chromosome in D. melanogaster, as well as characterize their general molecular features. Our results suggests that the polytene and interphase cell line chromosomes have practically the same patterns of bands and interbands reflecting, probably, the basic principle of interphase chromosome organization. Two types of bands have been described in chromosomes, early and late-replicating, which differ in many aspects of their protein and genetic content. As appeared, origin recognition complexes are located almost totally in the interbands of chromosomes

    Polytene chromosomes reflect functional organization of the Drosophila genome

    Get PDF
    Polytene chromosomes of Drosophila melanogaster are a convenient model for studying interphase chromosomes of eukaryotes. They are giant in size in comparison with diploid cell chromosomes and have a pattern of cross stripes resulting from the ordered chromatid arrangement. Each region of polytene chromosomes has a unique banding pattern. Using the model of four chromatin types that reveals domains of varying compaction degrees, we were able to correlate the physical and cytological maps of some polytene chromosome regions and to show the main properties of genetic and molecular organization of bands and interbands, that we describe in this review. On the molecular map of the genome, the interbands correspond to decompacted aquamarine chromatin and 5’ ends of ubiquitously active genes. Gray bands contain lazurite and malachite chromatin, intermediate in the level of compaction, and, mainly, coding parts of genes. Dense black transcriptionally inactive bands are enriched in ruby chromatin. Localization of several dozens of interbands on the genome molecular map allowed us to study in detail their architecture according to the data of whole genome projects. The distribution of proteins and regulatory elements of the genome in the promoter regions of genes localized in the interbands shows that these parts of interbands are probably responsible for the formation of open chromatin that is visualized in polytene chromosomes as interbands. Thus, the permanent genetic activity of interbands and gray bands and the inactivity of genes in black bands are the basis of the universal banding pattern in the chromosomes of all Drosophila tissues. The smallest fourth chromosome of Drosophila with an atypical protein composition of chromatin is a special case.  Using the model of four chromatin states and fluorescent in situ hybridization, its cytological map was refined and the genomic coordinates of all bands and interbands were determined. It was shown that, in spite of the peculiarities of this chromosome, its band organization in general corresponds to the rest of the genome. Extremely long genes of different Drosophila chromosomes do not fit the common scheme, since they can occupy a series of alternating bands and interbands (up to nine chromosomal structures) formed by parts of these genes

    Late Replication Domains in Polytene and Non-Polytene Cells of Drosophila melanogaster

    Get PDF
    In D. melanogaster polytene chromosomes, intercalary heterochromatin (IH) appears as large dense bands scattered in euchromatin and comprises clusters of repressed genes. IH displays distinctly low gene density, indicative of their particular regulation. Genes embedded in IH replicate late in the S phase and become underreplicated. We asked whether localization and organization of these late-replicating domains is conserved in a distinct cell type. Using published comprehensive genome-wide chromatin annotation datasets (modENCODE and others), we compared IH organization in salivary gland cells and in a Kc cell line. We first established the borders of 60 IH regions on a molecular map, these regions containing underreplicated material and encompassing ∼12% of Drosophila genome. We showed that in Kc cells repressed chromatin constituted 97% of the sequences that corresponded to IH bands. This chromatin is depleted for ORC-2 binding and largely replicates late. Differences in replication timing between the cell types analyzed are local and affect only sub-regions but never whole IH bands. As a rule such differentially replicating sub-regions display open chromatin organization, which apparently results from cell-type specific gene expression of underlying genes. We conclude that repressed chromatin organization of IH is generally conserved in polytene and non-polytene cells. Yet, IH domains do not function as transcription- and replication-regulatory units, because differences in transcription and replication between cell types are not domain-wide, rather they are restricted to small “islands” embedded in these domains. IH regions can thus be defined as a special class of domains with low gene density, which have narrow temporal expression patterns, and so displaying relatively conserved organization

    Experience in genetic testing of hypertrophic cardiomyopathy using nanopore DNA sequencing

    Get PDF
    Aim. To investigate the application of the Oxford Nanopore Technologies’ third generation sequencing for the genetic testing of hypertrophic cardiomyopathy.Material and methods. The study involved 12 patients with hypertrophic cardiomyopathy aged 18 to 67 years (women, 9; men, 3). Using the PCR barcoding amplicons (SQK-LSK109) protocol, DNA libraries were created which contained long-range PCR fragments of the MYH7, MYBPC3, TNNT2, TNNI3 and TPM1 genes. The sequencing was performed using the MinION system by Oxford Nanopore Technologies (UK). Bioinformatic algorithms for data analysis included Guppy v.5.0.7, Nanopolish and Clairvoyante. The identified genetic variants were confirmed by Sanger sequencing.Results. Data on the complete sequence of the five major sarcomeric genes for hypertrophic cardiomyopathy were obtained. We found eight potentially disease-causing sequence variants in MYH7, MYBPC3 and TNNT2 genes by monomolecular sequencing. However, only three mutations p.Arg243Cys, p.Tyr609Asn, p.Arg870His in the MYH7 gene, and one mutation p.Lys985Asn in the MYBPC3 were confirmed by Sanger sequencing. Cascade screening of pathogenic variant p.Arg870His in the MYH7 gene was performed. We found one asymptomatic carrier.Conclusion. It appears that monomolecular sequencing technology is a feasible approach to identify mutations in patients with hypertrophic cardiomyopathy. Although improvement in accuracy of DNA sequencing, as well as optimization and simplification of bioinformatic algorithms for identification of the genetic variants are needed

    Genome-wide profiling of forum domains in Drosophila melanogaster

    Get PDF
    Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50–200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin
    corecore