172 research outputs found

    No-go theorem for bimetric gravity with positive and negative mass

    Full text link
    We argue that the most conservative geometric extension of Einstein gravity describing both positive and negative mass sources and observers is bimetric gravity and contains two copies of standard model matter which interact only gravitationally. Matter fields related to one of the metrics then appear dark from the point of view of an observer defined by the other metric, and so may provide a potential explanation for the dark universe. In this framework we consider the most general form of linearized field equations compatible with physically and mathematically well-motivated assumptions. Using gauge-invariant linear perturbation theory, we prove a no-go theorem ruling out all bimetric gravity theories that, in the Newtonian limit, lead to precisely opposite forces on positive and negative test masses.Comment: 19 pages, no figures, journal versio

    Gravitating Opposites Attract

    Full text link
    Generalizing previous work by two of us, we prove the non-existence of certain stationary configurations in General Relativity having a spatial reflection symmetry across a non-compact surface disjoint from the matter region. Our results cover cases such that of two symmetrically arranged rotating bodies with anti-aligned spins in n+1n+1 (n≄3n \geq 3) dimensions, or two symmetrically arranged static bodies with opposite charges in 3+1 dimensions. They also cover certain symmetric configurations in (3+1)-dimensional gravity coupled to a collection of scalars and abelian vector fields, such as arise in supergravity and Kaluza-Klein models. We also treat the bosonic sector of simple supergravity in 4+1 dimensions.Comment: 13 pages; slightly amended version, some references added, matches version to be published in Classical and Quantum Gravit

    Shape selection in non-Euclidean plates

    Full text link
    We investigate isometric immersions of disks with constant negative curvature into R3\mathbb{R}^3, and the minimizers for the bending energy, i.e. the L2L^2 norm of the principal curvatures over the class of W2,2W^{2,2} isometric immersions. We show the existence of smooth immersions of arbitrarily large geodesic balls in H2\mathbb{H}^2 into R3\mathbb{R}^3. In elucidating the connection between these immersions and the non-existence/singularity results of Hilbert and Amsler, we obtain a lower bound for the L∞L^\infty norm of the principal curvatures for such smooth isometric immersions. We also construct piecewise smooth isometric immersions that have a periodic profile, are globally W2,2W^{2,2}, and have a lower bending energy than their smooth counterparts. The number of periods in these configurations is set by the condition that the principal curvatures of the surface remain finite and grows approximately exponentially with the radius of the disc. We discuss the implications of our results on recent experiments on the mechanics of non-Euclidean plates

    KLEINE MITTEILUNGEN

    No full text

    Vollquerschnitte

    No full text
    • 

    corecore