1,319 research outputs found

    Autologous Platelet-Rich Plasma and Mesenchymal Stem Cells for the Treatment of Chronic Wounds

    Get PDF
    Emerging autologous cellular therapies, utilizing platelet-rich plasma and mesenchymal stem cell applications, have the potential to play an adjunctive role in a standardized wound care treatment plan in patients suffering from chronic and recalcitrant wounds. The use of platelet-rich plasma growth is based on the fact that platelet growth factors can support the three phases of wound healing and then ultimately contribute to full wound closure. Mesenchymal stem cell-based therapies are also an attractive approach for the treatment of these difficult-to-heal wounds. This field of regenerative medicine focuses primarily on stem cells, which are specialized cells with the ability to self-renew and differentiate into multiple cell types. Mesenchymal stem cells can be isolated from bone marrow and adipose tissue via minimally manipulative and cell-processing techniques, at point of care. Both platelet-rich plasma and mesenchymal stem cell applications have the potential to become an effective and ideal autologous biological cell-based therapy, which can be applied to chronic wounds to effectively change the wound bed microenvironment to enable and accelerate wound closure

    Spatially anisotropic Heisenberg Kagome antiferromagnet

    Full text link
    In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies [Hiroi et al.,2001]. It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the Sp(N) symmetric generalisation of this model in the large N limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long range order and a decoupled chain phase emerges.Comment: 6 pages, 6 figures, proceedings of the HFM2006 conference, to appear in a special issue of J. Phys.: Condens. Matte

    Atomic quantum gases in Kagom\'e lattices

    Full text link
    We demonstrate the possibility of creating and controlling an ideal and \textit{trimerized} optical Kagom\'e lattice, and study the low temperature physics of various atomic gases in such lattices. In the trimerized Kagom\'e lattice, a Bose gas exhibits a Mott transition with fractional filling factors, whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half filling for both components represents a frustrated quantum antiferromagnet with a resonating-valence-bond ground state and quantum spin liquid behavior dominated by continuous spectrum of singlet and triplet excitations. We discuss the method of preparing and observing such quantum spin liquid employing molecular Bose condensates.Comment: 4 pages, 1 figure. Missing affiliations adde

    Exploring Science and Engineering Practices in Children’s Picture Books

    Get PDF
    This article features an annotated bibliography of children’s books that illustrate engineering concepts tied to the Next Generation Science Standards (NGSS) Science and Engineering Practices for K-2 students (National Science Teaching Association -NSTA, n.d., see Appendix A) and NGSS K-2 Engineering Design performance expectations (NSTA, n.d., see Appendix B). The selected children’s books encourage discussion and model the process of inquiry and problem solving that may inspire young children to explore STEM (Science, Technology, Engineering, and Mathematics) questions of their own

    Finite-temperature ordering in a two-dimensional highly frustrated spin model

    Full text link
    We investigate the classical counterpart of an effective Hamiltonian for a strongly trimerized kagome lattice. Although the Hamiltonian only has a discrete symmetry, the classical groundstate manifold has a continuous global rotational symmetry. Two cases should be distinguished for the sign of the exchange constant. In one case, the groundstate has a 120^\circ spin structure. To determine the transition temperature, we perform Monte-Carlo simulations and measure specific heat, the order parameter as well as the associated Binder cumulant. In the other case, the classical groundstates are macroscopically degenerate. A thermal order-by-disorder mechanism is predicted to select another 120^\circ spin-structure. A finite but very small transition temperature is detected by Monte-Carlo simulations using the exchange method.Comment: 11 pages including 9 figures, uses IOP style files; to appear in J. Phys.: Condensed Matter (proceedings of HFM2006

    Exogenous application of platelet-leukocyte gel during open subacromial decompression contributes to improved patient outcome

    Get PDF
    Background: Platelet-leukocyte gel (PLG) is being used during various surgical procedures in an attempt to enhance the healing process. We studied the effects of PLG on postoperative recovery of patients undergoing open subacromial decompression (OSD). Methods: PLG was produced from platelet-leukocyte-rich plasma (P-LRP), prepared from a unit of whole blood. Forty patients were included in the study. Self-assessed evaluations, using the American Shoulder and Elbow Surgeons scoring system of activities of daily living (ADL), joint instability, pain levels, pain medications, and clinical evaluations for range of motion were conducted. Results: Platelet and leukocyte counts were significantly increased in the P-LRP compared to baseline counts. Treated patients demonstrated decreased visual analog scales for pain and used significantly less pain medication, had an improved range of motion during passive forward elevation, external rotation, external rotation with arm at 90 degrees abduction, internal rotation, and cross body adduction compared to control patients (p < 0.001). No differences in the instability score were observed between the groups. Furthermore, treated patients performed more ADL (p < 0.05). Conclusion: In the PLG-treated group, recovery was faster and patients returned earlier to daily activities and also took less pain medication than control subjects

    Atomic Fermi gas in the trimerized Kagom\'e lattice at the filling 2/3

    Full text link
    We study low temperature properties of an atomic spinless interacting Fermi gas in the trimerized Kagom\'e lattice for the case of two fermions per trimer. The system is described by a quantum spin 1/2 model on the triangular lattice with couplings depending on bonds directions. Using exact diagonalizations we show that the system exhibits non-standard properties of a {\it quantum spin-liquid crystal}, combining a planar antiferromagnetic order with an exceptionally large number of low energy excitations.Comment: 4 pages & 4 figures + 2 tables, better version of Fig.

    Colloid-oil-water-interface interactions in the presence of multiple salts: charge regulation and dynamics

    Full text link
    We theoretically and experimentally investigate colloid-oil-water-interface interactions of charged, sterically stabilized, poly(methyl-methacrylate) colloidal particles dispersed in a low-polar oil (dielectric constant ϵ=5−10\epsilon=5-10) that is in contact with an adjacent water phase. In this model system, the colloidal particles cannot penetrate the oil-water interface due to repulsive van der Waals forces with the interface whereas the multiple salts that are dissolved in the oil are free to partition into the water phase. The sign and magnitude of the Donnan potential and/or the particle charge is affected by these salt concentrations such that the effective interaction potential can be highly tuned. Both the equilibrium effective colloid-interface interactions and the ion dynamics are explored within a Poisson-Nernst-Planck theory, and compared to experimental observations.Comment: 13+2 pages, 5+3 figures; V2: small clarifications in the tex

    Scaling of the Hysteresis Loop in Two-dimensional Solidification

    Get PDF
    The first order phase transitions between a two-dimensional (2d) gas and the 2d solid of the first monolayer have been studied for the noble gases Ar, Kr and Xe on a NaCl(100) surface in quasi-equilibrium with the three-dimensional gas phase. Using linear temperature ramps, we show that the widths of the hysteresis loops of these transitions as a function of the heating rate, r, scales with a power law r^alpha with alpha between 0.4 and 0.5 depending on the system. The hysteresis loops for different heating rates are similar. The island area of the condensed layer was found to grow initially with a t^4 time dependence. These results are in agreement with theory, which predicts alpha = 0.5 and hysteresis loop similarity.Comment: 4 pages, 5 figures, Revte

    Drijfmesttoediening op klei in voorjaar mogelijk

    Get PDF
    Voor de teelt van maos op kleigrond kan toediening van drijfmest uitgesteld worden tot het voorjaar. Voordelen hiervan zijn een betere benutting van de mineralen, minder mineralenverliezen en een lager stikstofoverschot
    • …
    corecore