108 research outputs found

    Manipulations of individual molecules by scanning probe microscopy

    Full text link
    In this Letter we suggest a new method of manipulating individual molecules with scanning probes using a "pick-up-and put-down" mode. We demonstrate that the number of molecules picked up by the tip and deposited in a different location can be controlled by adjusting the pulling velocity of the tip and the distance of closest approach of the tip to the surface

    Static and dynamic friction in sliding colloidal monolayers

    Full text link
    In a pioneer experiment, Bohlein et al. realized the controlled sliding of two-dimensional colloidal crystals over laser-generated periodic or quasi-periodic potentials. Here we present realistic simulations and arguments which besides reproducing the main experimentally observed features, give a first theoretical demonstration of the potential impact of colloid sliding in nanotribology. The free motion of solitons and antisolitons in the sliding of hard incommensurate crystals is contrasted with the soliton-antisoliton pair nucleation at the large static friction threshold Fs when the two lattices are commensurate and pinned. The frictional work directly extracted from particles' velocities can be analysed as a function of classic tribological parameters, including speed, spacing and amplitude of the periodic potential (representing respectively the mismatch of the sliding interface, and the corrugation, or "load"). These and other features suggestive of further experiments and insights promote colloid sliding to a novel friction study instrument.Comment: in print in the Proceedings of the National Academy of Sciences U.S.A. This v2 is identical to v1, but includes ancillary material. A few figures were undersampled due to size limits: those in v1 are far sharpe

    Atomic scale engines: Cars and wheels

    Full text link
    We introduce a new approach to build microscopic engines on the atomic scale that move translationally or rotationally and can perform useful functions such as pulling of a cargo. Characteristic of these engines is the possibility to determine dynamically the directionality of the motion. The approach is based on the transformation of the fed energy to directed motion through a dynamical competition between the intrinsic lengths of the moving object and the supporting carrier.Comment: 4 pages, 3 figures (2 in color), Phys. Rev. Lett. (in print

    Molecular motor that never steps backwards

    Full text link
    We investigate the dynamics of a classical particle in a one-dimensional two-wave potential composed of two periodic potentials, that are time-independent and of the same amplitude and periodicity. One of the periodic potentials is externally driven and performs a translational motion with respect to the other. It is shown that if one of the potentials is of the ratchet type, translation of the potential in a given direction leads to motion of the particle in the same direction, whereas translation in the opposite direction leaves the particle localized at its original location. Moreover, even if the translation is random, but still has a finite velocity, an efficient directed transport of the particle occurs.Comment: 4 pages, 5 figures, Phys. Rev. Lett. (in print

    Surface Roughness and Effective Stick-Slip Motion

    Get PDF
    The effect of random surface roughness on hydrodynamics of viscous incompressible liquid is discussed. Roughness-driven contributions to hydrodynamic flows, energy dissipation, and friction force are calculated in a wide range of parameters. When the hydrodynamic decay length (the viscous wave penetration depth) is larger than the size of random surface inhomogeneities, it is possible to replace a random rough surface by effective stick-slip boundary conditions on a flat surface with two constants: the stick-slip length and the renormalization of viscosity near the boundary. The stick-slip length and the renormalization coefficient are expressed explicitly via the correlation function of random surface inhomogeneities. The effective stick-slip length is always negative signifying the effective slow-down of the hydrodynamic flows by the rough surface (stick rather than slip motion). A simple hydrodynamic model is presented as an illustration of these general hydrodynamic results. The effective boundary parameters are analyzed numerically for Gaussian, power-law and exponentially decaying correlators with various indices. The maximum on the frequency dependence of the dissipation allows one to extract the correlation radius (characteristic size) of the surface inhomogeneities directly from, for example, experiments with torsional quartz oscillators.Comment: RevTeX4, 14 pages, 3 figure

    Velocity tuning of friction with two trapped atoms

    Get PDF
    Our ability to control friction remains modest, as our understanding of the underlying microscopic processes is incomplete. Atomic force experiments have provided a wealth of results on the dependence of nanofriction on structure velocity and temperature but limitations in the dynamic range, time resolution, and control at the single-atom level have hampered a description from first principles. Here, using an ion-crystal system with single-atom, single-substrate-site spatial and single-slip temporal resolution we measure the friction force over nearly five orders of magnitude in velocity, and contiguously observe four distinct regimes, while controlling temperature and dissipation. We elucidate the interplay between thermal and structural lubricity for two coupled atoms, and provide a simple explanation in terms of the Peierls–Nabarro potential. This extensive control at the atomic scale enables fundamental studies of the interaction of many-atom surfaces, possibly into the quantum regime

    Patterns and flow in frictional fluid dynamics

    Get PDF
    Pattern-forming processes in simple fluids and suspensions have been studied extensively, and the basic displacement structures, similar to viscous fingers and fractals in capillary dominated flows, have been identified. However, the fundamental displacement morphologies in frictional fluids and granular mixtures have not been mapped out. Here we consider Coulomb friction and compressibility in the fluid dynamics, and discover surprising responses including highly intermittent flow and a transition to quasi-continuodynamics. Moreover, by varying the injection rate over several orders of magnitude, we characterize new dynamic modes ranging from stick-slip bubbles at low rate to destabilized viscous fingers at high rate. We classify the fluid dynamics into frictional and viscous regimes, and present a unified description of emerging morphologies in granular mixtures in the form of extended phase diagrams
    • …
    corecore