258 research outputs found

    Construction of an integrated consensus map of the Apple genome based on four mapping populations

    Get PDF
    An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1¿=¿Discovery × TN10-8, C2¿=¿Fiesta × Discovery, C3¿=¿Discovery × Prima, C4¿=¿Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene® software. First, integrated female¿male maps were built for each population using common female¿male simple sequence repeat markers (SSRs). Then, common SSRs over populations were used for the consensus map integration. The integrated consensus map consists of 1,046 markers, of which 159 are SSR markers, distributed over 17 linkage groups reflecting the basic chromosome number of apple. The total length of the integrated consensus map was 1,032 cM with a mean distance between adjacent loci of 1.1 cM. Markers were proportionally distributed over the 17 linkage groups (¿ 2¿=¿16.53, df¿=¿16, p¿=¿0.41). A non-uniform marker distribution was observed within all of the linkage groups (LGs). Clustering of markers at the same position (within a 1-cM window) was observed throughout LGs and consisted predominantly of only two to three linked markers. The four integrated female¿male maps showed a very good colinearity in marker order for their common markers, except for only two (CH01h01, CH05g03) and three (CH05a02z, NZ02b01, Lap-1) markers on LG17 and LG15, respectively. This integrated consensus map provides a framework for performing quantitative trait locus (QTL) detection in a multi-population design and evaluating the genetic background effect on QTL expression

    Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL

    Get PDF
    Scab, caused by the fungal pathogen Venturia inaequalis, is the most common disease of cultivated apple (Malus domestica). The fungal races 6 and 7 have now overcome the major resistance gene Vf, which is widely used in apple breeding programmes. New breeding strategies to achieve durable resistance are thus necessary. The aim of this study was to determine the genetic basis of quantitative resistance of the apple cultivar ‘Du¨lmener Rosenapfel’, known to be scab resistant under different environmental conditions. An F1 progeny derived from the cross between the susceptible cultivar ‘Gala’ and ‘Du¨lmener Rosenapfel’ was tested in a greenhouse with a multi-isolate inoculum of V. inaequalis. Rvi14, a new major gene that conditions a chlorotic-type reaction, was mapped on linkage group (LG) 6 in a genomic region not known to be involved in disease resistance. A further three quantitative trait loci (QTL) for resistance were identified. One co-localized with Rvi14 on LG6, whereas the remaining two were detected on LG11 and LG17, in genomic regions already reported to carry broad-spectrum QTL in other genetic backgrounds. Since a selective genotyping approach was used to detect QTL, an expectation-maximization (EM) computation was used to estimate the corrected QTL contributions to phenotypic variation and was validated by entire progeny genotyping

    Differential selection pressures exerted by host resistance quantitative trait loci on a pathogen population: a case study in an apple × Venturia inaequalis pathosystem

    Get PDF
    Understanding how pathogens evolve according to pressures exerted by their plant hosts is essential for the derivation of strategies aimed at the durable management of resistant cultivars. The spectrum of action of the resistance factors in the partially resistant cultivars is thought to be an important determinant of resistance durability. However, it has not yet been demonstrated whether the pressures exerted by quantitative resistance are different according to their spectrum of action.To investigate selection pressures exerted by apple genotypes harbouring various resistance quantitative trait loci (QTLs) on a mixed inoculum of the scab disease agent, Venturia inaequalis, we monitored V. inaequalis isolate proportions on diseased apple leaves of an F1 progeny using quantitative pyrosequencing technology and QTL mapping. Broad-spectrum resistances did not exert any differential selection pressures on the mixed inoculum, whereas narrow-spectrum resistances decreased the frequencies of some isolates in the mixture relative to the susceptible host genotypes. Our results suggest that the management of resistant cultivars should be different according to the spectrum of action of their resistance factors. The pyramiding of broad-spectrum factors or the use of a mixture of apple genotypes that carry narrow-spectrum resistance factors are two possible strategies for the minimization of resistance erosion

    Identification of serine/threonine kinase and nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’

    Get PDF
    Fire blight is the most destructive bacterial disease affecting apple (Malus×domestica) worldwide. So far, no resistance gene against fire blight has been characterized in apple, despite several resistance regions having been identified. A highly efficacious resistance quantitative trait locus (QTL) was localized on linkage group 12 (LG12) of the ornamental cultivar ‘Evereste’. A marker previously reported to be closely linked to this resistance was used to perform a chromosome landing. A bacterial artificial chromosome (BAC) clone of 189 kb carrying the fire blight resistance QTL was isolated and sequenced. New microsatellite markers were developed, and the genomic region containing the resistance locus was limited to 78 kb. A cluster of eight genes with homologies to already known resistance gene structures to bacterial diseases was identified and the corresponding gene transcription was verified. From this cluster, two genes were recognized in silico as the two most probable fire blight resistance genes showing homology with the Pto/Prf complex in tomato

    The threat of wild habitat to scab resistant apple cultivars

    Get PDF
    Evaluations of plant resistance to pathogens are rarely made using isolates from wild habitats, although the heterogeneity of such habitats may generate pathogen diversity which could be a source of new virulence in cultivated habitats. The aim of this study was to investigate whether scab resistance factors, identified and characterized in apples using isolates of Venturia inaequalis from a cultivated habitat, remained effective against isolates from a wild habitat. Three V. inaequalis core collections originating from the cultivated apple Malus × domestica and from two wild species, M. sieversii and M. sylvestris, were established to maximize pathogen diversity. For each core collection, 10 isolates were inoculated in mixtures onto 51 genotypes from an apple progeny segregating for two qualitative resistance genes and six quantitative resistance loci (QRL). On each apple genotype, isolates that contributed to the scab symptoms were identified within the mixture using microsatellite markers. The most frequently detected isolates were inoculated singly to compare their aggressiveness according to their host origin. The results showed that isolates from a wild habitat were able to infect the susceptible apple genotypes. However, these isolates were never more aggressive than isolates from the cultivated habitat on the resistance factors tested. It can therefore be concluded that the resistance factors used in this study, identified with V. inaequalis isolates from a cultivated habitat, remained effective against isolates from M. sylvestris and M. sieversii

    Pression de sélection exercée par des génotypes de Malus x domestica partiellement résistants sur des populations de Venturia inaequalis provenant des compartiments sauvages et cultivés

    Get PDF
    Le déploiement de variétés résistantes portant des gènes majeurs peut avoir un impact fort sur la structuration des populations de pathogène. Chez le pommier, l’utilisation des variétés résistantes à la tavelure portant le gène majeur Vf a conduit à l’augmentation en fréquence de souches virulentes, probablement issues du compartiment sauvage, menant à la perte d’efficacité de ce gène. Les résistances partielles sont considérées plus durables. Cependant l’adaptation des pathogènes à ce type de résistance a été beaucoup moins étudiée. Dans cette étude, nous testons l’hypothèse (1) d’une adaptation différentielle des souches selon leur compartiment d’origine (2) d’une sélection des souches les plus agressives par les résistances partielles. Deux cultivars sensibles et 51 génotypes appartenant à une descendance F1 où ségrégent 8 facteurs de résistance (QTLs et gènes majeurs) ont été inoculés en conditions contrôlées par 3 core collections de V. inaequalis isolées de M. x domestica et d’espèces endémiques asiatique, M. sieversii et européenne, M. sylvestris. Chaque core collection est constituée de 10 souches inoculées en mélange. La sévérité de la maladie a été notée, l’identité des souches sporulantes a ensuite été définie à l’aide de marqueurs microsatellites. Enfin, les souches identifiées ont été inoculées seules sur certains génotypes F1 ainsi que sur les cultivars sensibles afin de comparer leur agressivité. Concernant le compartiment sauvage, 2 souches sont toujours présentes quelque soit le génotype testé suggérant que l’effet de compétition entre souches serait plus important que l’effet du génotype hôte. En revanche, les fréquences de détection des souches issues de M. x domestica varient selon le génotype. De plus, c’est dans ce compartiment que l’on détecte le plus de souches multivirulentes. Le lien entre résistances partielles et niveau d’agressivité sera présenté

    Genomic basis of the differences between cider and dessert apple varieties

    Get PDF
    Unravelling the genomic processes at play during variety diversification is of fundamental interest for understanding evolution, but also of applied interest in crop science. It can indeed provide knowledge on the genetic bases of traits for crop improvement and germplasm diversity management. Apple is one of the most important fruit crops in temperate regions, having both great economic and cultural values. Sweet dessert apples are used for direct consumption while bitter cider apples are used to produce cider. Several important traits are known to differentiate the two variety types, in particular fruit size, biennial versus annual fruit bearing and bitterness, caused by a higher content in polyphenols. Here, we used an Illumina 8K SNP chip on two core collections, of 48 dessert and 48 cider apples, respectively, for identifying genomic regions responsible for the differences between cider and dessert apples. The genome-wide level of genetic differentiation between cider and dessert apples was low, although 17 candidate regions showed signatures of divergent selection, displaying either outlier FST values or significant association with phenotypic traits (bitter versus sweet fruits). These candidate regions encompassed 420 genes involved in a variety of functions and metabolic pathways, including several colocalizations with QTLs for polyphenol compounds

    Microsatellite markers spanning the apple ( Malus x domestica Borkh.) genome

    Get PDF
    A new set of 148 apple microsatellite markers has been developed and mapped on the apple reference linkage map Fiesta x Discovery. One-hundred and seventeen markers were developed from genomic libraries enriched with the repeats GA, GT, AAG, AAC and ATC; 31 were developed from EST sequences. Markers derived from sequences containing dinucleotide repeats were generally more polymorphic than sequences containing trinucleotide repeats. Additional eight SSRs from published apple, pear, and Sorbus torminalis SSRs, whose position on the apple genome was unknown, have also been mapped. The transferability of SSRs across Maloideae species resulted in being efficient with 41% of the markers successfully transferred. For all 156 SSRs, the primer sequences, repeat type, map position, and quality of the amplification products are reported. Also presented are allele sizes, ranges, and number of SSRs found in a set of nine cultivars. All this information and those of the previous CH-SSR series can be searched at the apple SSR database ( http://www.hidras.unimi.it ) to which updates and comments can be added. A large number of apple ESTs containing SSR repeats are available and should be used for the development of new apple SSRs. The apple SSR database is also meant to become an international platform for coordinating this effort. The increased coverage of the apple genome with SSRs allowed the selection of a set of 86 reliable, highly polymorphic, and overall the apple genome well-scattered SSRs. These SSRs cover about 85% of the genome with an average distance of one marker per 15c
    • …
    corecore