110 research outputs found
Double-lambda microscopic model for entangled light generation by four-wave-mixing
Motivated by recent experiments, we study four-wave-mixing in an atomic
double-{\Lambda} system driven by a far-detuned pump. Using the
Heisenberg-Langevin formalism, and based on the microscopic properties of the
medium, we calculate the classical and quantum properties of seed and conju-
gate beams beyond the linear amplifier approximation. A continuous variable
approach gives us access to relative-intensity noise spectra that can be
directly compared to experiments. Restricting ourselves to the cold-atom
regime, we predict the generation of quantum-correlated beams with a
relative-intensity noise spectrum well below the standard quantum limit (down
to -6 dB). Moreover entanglement between seed and conjugate beams measured by
an inseparability down to 0.25 is expected. This work opens the way to the
generation of entangled beams by four-wave mixing in a cold atomic sample.Comment: 11 pages, 6 figures, submitted to PR
Rubidium-87 Bose-Einstein condensate in an optically plugged quadrupole trap
We describe an experiment to produce 87Rb Bose-Einstein condensates in an
optically plugged magnetic quadrupole trap, using a blue-detuned laser. Due to
the large detuning of the plug laser with respect to the atomic transition, the
evaporation has to be carefully optimized in order to efficiently overcome the
Majorana losses. We provide a complete theoretical and experimental study of
the trapping potential at low temperatures and show that this simple model
describes well our data. In particular we demonstrate methods to reliably
measure the trap oscillation frequencies and the bottom frequency, based on
periodic excitation of the trapping potential and on radio-frequency
spectroscopy, respectively. We show that this hybrid trap can be operated in a
well controlled regime that allows a reliable production of degenerate gases.Comment: 13 pages, 8 figure
Photoionisation loading of large Sr+ ion clouds with ultrafast pulses
This paper reports on photoionisation loading based on ultrafast pulses of
singly-ionised strontium ions in a linear Paul trap. We take advantage of an
autoionising resonance of Sr neutral atoms to form Sr+ by two-photon absorption
of femtosecond pulses at a wavelength of 431nm. We compare this technique to
electron-bombardment ionisation and observe several advantages of
photoionisation. It actually allows the loading of a pure Sr+ ion cloud in a
low radio-frequency voltage amplitude regime. In these conditions up to 4x10^4
laser-cooled Sr+ ions were trapped
Van der Waals-Casimir-Polder interaction of an atom with a composite surface
We study the dispersion interaction of the van der Waals and Casimir-Polder
(vdW-CP) type between a neutral atom and the surface of a metal by allowing for
nonlocal electrodynamics, i.e. electron diffusion. We consider two models: (i)
bulk diffusion, and (ii) diffusion in a surface charge layer. In both cases the
transition to a semiconductor is continuous as a function of the conductivity,
unlike the case of a local model. The relevant parameter is the electric
screening length and depends on the carrier diffusion constant. We find that
for distances comparable to the screening length, vdW-CP data can distinguish
between bulk and surface diffusion, hence it can be a sensitive probe for
surface states.Comment: v2: expanded references, statements on current status in the field.
10 pages, 6 figure
Nonadhesive Culture System as a Model of Rapid Sphere Formation with Cancer Stem Cell Properties
BACKGROUND: Cancer stem cells (CSCs) play an important role in tumor initiation, progression, and metastasis and are responsible for high therapeutic failure rates. Identification and characterization of CSC are crucial for facilitating the monitoring, therapy, or prevention of cancer. Great efforts have been paid to develop a more effective methodology. Nevertheless, the ideal model for CSC research is still evolving. In this study, we created a nonadhesive culture system to enrich CSCs from human oral squamous cell carcinoma cell lines with sphere formation and to characterize their CSC properties further. METHODS: A nonadhesive culture system was designed to generate spheres from the SAS and OECM-1 cell lines. A subsequent investigation of their CSC properties, including stemness, self-renewal, and chemo- and radioresistance in vitro, as well as tumor initiation capacity in vivo, was also performed. RESULTS: Spheres were formed cost-effectively and time-efficiently within 5 to 7 days. Moreover, we proved that these spheres expressed putative stem cell markers and exhibited chemoradiotherapeutic resistance, in addition to tumor-initiating and self-renewal capabilities. CONCLUSIONS: Using this nonadhesive culture system, we successfully established a rapid and cost-effective model that exhibits the characteristics of CSCs and can be used in cancer research
Cell–cell and cell–matrix dynamics in intraperitoneal cancer metastasis
The peritoneal metastatic route of cancer dissemination is shared by cancers of the ovary and gastrointestinal tract. Once initiated, peritoneal metastasis typically proceeds rapidly in a feed-forward manner. Several factors contribute to this efficient progression. In peritoneal metastasis, cancer cells exfoliate into the peritoneal fluid and spread locally, transported by peritoneal fluid. Inflammatory cytokines released by tumor and immune cells compromise the protective, anti-adhesive mesothelial cell layer that lines the peritoneal cavity, exposing the underlying extracellular matrix to which cancer cells readily attach. The peritoneum is further rendered receptive to metastatic implantation and growth by myofibroblastic cell behaviors also stimulated by inflammatory cytokines. Individual cancer cells suspended in peritoneal fluid can aggregate to form multicellular spheroids. This cellular arrangement imparts resistance to anoikis, apoptosis, and chemotherapeutics. Emerging evidence indicates that compact spheroid formation is preferentially accomplished by cancer cells with high invasive capacity and contractile behaviors. This review focuses on the pathological alterations to the peritoneum and the properties of cancer cells that in combination drive peritoneal metastasis
DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France
We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon
- …