409 research outputs found

    Summation of all-loop UV divergences in maximally supersymmetric gauge theories

    Get PDF
    We consider the leading and subleading UV divergences for the four-point on-shell scattering amplitudes in D=6,8,10 supersymmetric Yang-Mills theories in the planar limit. These theories belong to the class of maximally supersymmetric gauge theories and presumably possess distinguished properties beyond perturbation theory. In the previous works, we obtained the recursive relations that allow one to get the leading and subleading divergences in all loops in a pure algebraic way. The all loop summation of the leading divergences is performed with the help of the differential equations which are the generalization of the RG equations for non-renormalizable theories. Here we mainly focus on solving and analyzing these equations. We discuss the properties of the obtained solutions and interpretation of the results.Comment: PdfLatex, 18 pages, 9 Figure

    Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS): correction for humidity effects

    Get PDF
    Formaldehyde measurements can provide useful information about photochemical activity in ambient air, given that HCHO is formed via numerous oxidation processes. Proton transfer reaction mass spectrometry (PTR-MS) is an online technique that allows measurement of VOCs at the sub-ppbv level with good time resolution. PTR-MS quantification of HCHO is hampered by the humidity dependence of the instrument sensitivity, with higher humidity leading to loss of PTR-MS signal. In this study we present an analytical, first principles approach to correct the PTR-MS HCHO signal according to the concentration of water vapor in sampled air. The results of the correction are validated by comparison of the PTR-MS results to those from a Hantzsch fluorescence monitor which does not have the same humidity dependence. Results are presented for an intercomparison made during a field campaign in rural Ontario at Environment Canada's Centre for Atmospheric Research Experiments

    Comparison of the ability of mammalian eEF1A1 and its oncogenic variant eEF1A2 to interact with actin and calmodulin

    Get PDF
    The question as to why a protein exerts oncogenic properties is answered mainly by well-established ideas that these proteins interfere with cellular signaling pathways. However, the knowledge about structural and functional peculiarities of the oncoproteins causing these effects is far from comprehensive. The 97.5% homologous tissue-specific A1 and A2 isoforms of mammalian translation elongation factor eEF1A represent an interesting model to study a difference between protein variants of a family that differ in oncogenic potential. We propose that the different oncogenic impact of A1 and A2 might be explained by differences in their ability to communicate with their respective cellular partners. Here we probed this hypothesis by studying the interaction of eEF1A with two known partners – calmodulin and actin. Indeed, an inability of the A2 isoform to interact with calmodulin is shown, while calmodulin is capable of binding A1 and interferes with its tRNA-binding and actin-bundling activities in vitro. Both A1 and A2 variants revealed actin-bundling activity; however, the form of bundles formed in the presence of A1 or A2 was distinctly different. Thus, a potential inability of A2 to be controlled by Ca2+-mediated regulatory systems is revealed

    Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: Uptake kinetics and condensed-phase products

    No full text
    International audienceThe kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl) sebacate (BES) particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS) and scanning mobility particle sizer (SMPS) was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of ?0 = 1.26 (±0.04), confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity

    Superconducting properties of sulfur-doped iron selenide

    Full text link
    The recent discovery of high-temperature superconductivity in single-layer iron selenide has generated significant experimental interest for optimizing the superconducting properties of iron-based superconductors through the lattice modification. For simulating the similar effect by changing the chemical composition due to S doping, we investigate the superconducting properties of high-quality single crystals of FeSe1x_{1-x}Sx_{x} (xx=0, 0.04, 0.09, and 0.11) using magnetization, resistivity, the London penetration depth, and low temperature specific heat measurements. We show that the introduction of S to FeSe enhances the superconducting transition temperature TcT_{c}, anisotropy, upper critical field Hc2H_{c2}, and critical current density JcJ_{c}. The upper critical field Hc2(T)H_{c2}(T) and its anisotropy are strongly temperature dependent, indicating a multiband superconductivity in this system. Through the measurements and analysis of the London penetration depth λab(T)\lambda _{ab}(T) and specific heat, we show clear evidence for strong coupling two-gap ss-wave superconductivity. The temperature-dependence of λab(T)\lambda _{ab}(T) calculated from the lower critical field and electronic specific heat can be well described by using a two-band model with ss-wave-like gaps. We find that a dd-wave and single-gap BCS theory under the weak-coupling approach can not describe our experiments. The change of specific heat induced by the magnetic field can be understood only in terms of multiband superconductivity.Comment: 13 pages, 7 figure

    Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change

    Get PDF
    International audienceThe kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl) sebacate (BES) particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS) and scanning mobility particle sizer (SMPS) was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of ?0=1.3 (±0.4), confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity
    corecore