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1 Introduction

In recent years maximally supersymmetric gauge theories attracted much attention and

served as a theoretical playground promising new insight into the nature of gauge theo-

ries beyond usual perturbation theory. This became possible due to the development of

new computational techniques such as the spinor helicity and the on-shell momentum su-

perspace formalism [1, 2]. The most successful examples are the N = 4 SYM theory in

D = 4 [3, 4] and the N = 8 SUGRA [5–7]. These theories are believed to possess several

remarkable properties, among which are total or partial cancelation of UV divergences,

factorization of higher loop corrections and possible integrability. The success of factoriza-

tion leading to the BDS ansatz [3, 4] for the amplitudes in D = 4 N = 4 SYM stimulated

similar activity in other models and dimensions [8–10]. The universality of the developed

methods allows one to apply them to SYM theories in dimensions higher than 4 [11–13].

In this paper, we focus on the on-shell 4-point amplitude as the simplest structure

and analyze the UV divergences in maximally SYM theories in D=6,8,10 dimensions in all

loops. For D > 4 the on-shell amplitudes are IR finite and the only divergences are the

UV ones. Since the gauge coupling g2 in D-dimensions has dimension [4 − D], all these

theories are non-renormalizable.

Applying first the color decomposition of the amplitudes, we are left with the partial

amplitudes. Within the spinor-helicity formalism the tree level partial amplitudes depend

on the Mandelstam variables s,t and u and have a relatively simple universal form. The

advantage of the superspace formalism is that the tree level amplitudes always factorize so

that the ratio of the loop corrections to the tree level amplitude can be expressed in terms

of pure scalar master integrals shown in figure 1 [14].
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Figure 1. The universal expansion for the four-point scattering amplitude in SYM theories in terms

of master integrals. The connected strokes on the lines mean the square of the flowing momentum.

Within the dimensional regularization (dimensional reduction) the UV divergences

manifest themselves as the pole terms with the numerators being the polynomials over the

kinematic variables. In D-dimensions the first UV divergences start from L=6/(D-4) loops.

Consequently, in D=6 they start from 3 loops. The one loop case is exceptional and in D=8

and D=10 they start already at one loop. Notice that all simple loops as well as triangles

completely cancel in all loops. This is the consequence of maximal supersymmetry and

it seems this is maximal it can do. In D=4 this leads to the the cancellation of all the

UV divergences since boxes are finite, however, in higher dimensions the UV divergences

remain being non-renormalizable by power counting.

In recent papers [15–17], we considered the leading and subleading UV divergences of

the on-shell scattering amplitudes for all three cases of maximally supersymmetric SYM

theories, D=6 (N=2 SUSY), D=8 (N=1 SUSY) and D=10 (N=1 SUSY). We obtained

the recursive relations that allow one to get the leading and subleading divergences in

all loops in a pure algebraic way. Then we constructed the differential equations which

are the generalization of the RG equations for non-renormalizable theories. Similar to the

renormalizable theories, these equations lead to summation of the leading (and subleading)

divergences in all loops. Here we concentrate on solving these equations.

It is worth mentioning that PT series in QFT are asymptotic. However, this is true

for the full set of diagrams and is not the case of the series for the leading, the subleading,

etc. divergences. Indeed, in renoralizable theories the leading divergences simply form the

geometric progression as it follows from the one-loop RG equation. It is the beta-function

which is given by the asymptotic series. Take same is true for any theory independently

on whether it is renormalizable or not.
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2 The leading poles in all loops

We start with the leading poles and calculate them in all loops. This is possible even in

the non-renormalizable case due to the structure of the UV divergences, which follows from

the R′-operation. Indeed, according to general theorems, the UV divergences in any loop

order after subtraction of divergent subgraphs are local in the coordinate space [18, 19].

In [15, 16], we exploited this property and obtained the recursion relations that allow one

to calculate the leading poles in dimensional regularization algebraically starting with the

first (one-loop) ones. Denoting by Sn(s, t) and Tn(s, t) the sum of all contributions in the

n-th order of PT in s and t channels, respectively, we got the following recursive relations:

D=8, N=1 SYM.

nSn(s, t) = −2s2

∫ 1

0
dx

∫ x

0
dy y(1− x) (Sn−1(s, t′) + Tn−1(s, t′))|t′=tx+uy

+ s4

∫ 1

0
dx x2(1− x)2

n−2∑
k=1

2k−2∑
p=0

1

p!(p+ 2)!

dp

dt′p
(Sk(s, t

′) + Tk(s, t
′))×

× dp

dt′p
(Sn−1−k(s, t

′) + Tn−1−k(s, t
′))|t′=−sx (tsx(1− x))p, (2.1)

where S1 = 1
12 , T1 = 1

12 , u = −s − t. The same relation holds for T (s, t) with the

replacement s↔ t and T (s, t) = S(t, s).

D=10, N=1 SYM.

nSn(s, t) = −s3

∫ 1

0
dx

∫ x

0
dy y2(1− x)2 (Sn−1(s, t′) + Tn−1(s, t′))|t′=tx+uy

+ s5

∫ 1

0
dx x3(1− x)3

n−2∑
k=1

2k−2∑
p=0

1

p!(p+ 3)!

dp

dt′p
(Sk(s, t

′) + Tk(s, t
′))×

× dp

dt′p
(Sn−1−k(s, t

′) + Tn−1−k(s, t
′))|t′=−sx (tsx(1− x))p, (2.2)

where S1 = s
5! , T1 = t

5! .

D=6 N=2 SYM. In the case of D = 6, since the box diagram is convergent, the

recursive relation has no nonlinear terms and looks like

nSn(s, t) = −2s

∫ 1

0
dx

∫ x

0
dy (Sn−1(s, t′) + Tn−1(s, t′))|t′=tx+uy, n ≥ 4 (2.3)

S3 = −s/3, T3 = −t/3.

The procedure is based on the consistent application of the R′-operation and integra-

tion over the remaining triangle and bubble diagrams with the help of Feynman parameters.

These relations take into account all the diagrams of a given order of PT and allow

one not only to calculate the leading poles taking the one-loop one as input but to sum

all orders of PT. This can be achieved by multiplying both sides of eqs. (2.1)–(2.3) by

– 3 –
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(−z)n−1, where z = g2

ε and summing up from n=2 to infinity. Denoting the sum by

Σ(s, t, z) =
∑∞

n=1 Sn(s, t)(−z)n, we finally get the following differential equations in D=6,

8 and 10 dimensions, respectively,

D=6.

d

dz
Σ(s, t, z) = s− 2

z
Σ(s, t, z) + 2s

∫ 1

0
dx

∫ x

0
dy(Σ(s, t′, z) + Σ(t′, s, z))|t′=tx+uy, (2.4)

D=8.

d

dz
Σ(s, t, z) = − 1

12
+ 2s2

∫ 1

0
dx

∫ x

0
dy y(1− x) (Σ(s, t′, z) + Σ(t′, s, z))|t′=tx+uy (2.5)

− s4

∫ 1

0
dx x2(1−x)2

∞∑
p=0

1

p!(p+ 2)!

(
dp

dt′p
(Σ(s, t′, z) + Σ(t′, s, z))|t′=−sx

)2

(tsx(1−x))p,

D=10.

d

dz
Σ(s, t, z) = − s

5!
+ s3

∫ 1

0
dx

∫ x

0
dy y2(1− x)2 (Σ(s, t′z) + Σ(t′, s, z))|t′=tx+uy (2.6)

− s5

∫ 1

0
dx x3(1−x)3

∞∑
p=0

1

p!(p+ 3)!

(
dp

dt′p
(Σ(s, t′, z) + Σ(t′, s, z))|t′=−sx

)2

(tsx(1−x))p.

The same equations with the replacement s↔ t are valid for Σ(t, s, z).

Both the recursive relations and the differential equations can be simplified in the case

of particular sets of diagrams. For example, for the ladder type diagrams the remained

integration over Feynman parameters can be performed explicitly and one is left with the al-

gebraic (for recursive relations) or ordinary differential equations (for the sum of diagrams),

which can be explicitly solved. We will consider these solutions in the next section.

3 Solution of the equations

3.1 The ladder case

Since eqs. (2.4), (2.5) and (2.6) are integro-differential, their analytical solution is prob-

lematic. Therefore, we consider first the case of the ladder type diagrams, which is much

simpler and allows for the explicit solution. As it will be clear later, the ladder type dia-

grams give the main contribution to the total PT series and may serve as a model for the

full answer.

D=6. In this case, since the boxes are finite, the s-ladder type diagram of interest contains

one tennis-court subdiagram and the ladder of boxes added from the left or right (see

figure 2 left).

The equation for the ladder diagrams can be obtained from the recursive relations

(see [16]), however, one can also derive it from eq. (2.4). Since these diagrams depend

only on s, the integrals in eq. (2.4) for the first term in the r.h.s. drop. As for the second

– 4 –
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Ladder Ladder 2

Figure 2. The ladder type diagrams in D=6.

term, it corresponds to the t-ladder subdiagrams and does not contribute to the ladder

approximation. As a result, one has the ordinary differential equation

dΣL(s, z)

dz
= s− 2

z
ΣL(s, z) + sΣL(s, z), ΣL(s, 0) = 0. (3.1)

Note that ΣL(s, z) is dimensionless and depends on a single dimensionless argument sz.

The solution to this equation is

ΣL(s, z) =
2

s2z2

(
esz − 1− sz − s2z2

2

)
. (3.2)

And the same for the vertical ladder with the replacement s↔ t.

One can see that the obtained solution tends either to infinity or to a constant when

z →∞ (ε→ 0) depending on the sign of s. We will see that the full solution has the same

tendency. We discuss the consequences of this behaviour below.

One can get a similar expression for the next sequence of diagrams shown in figure 2

(right). This is also a ladder type diagram starting with the t-channel tennis-court at four

loops. In this case, the resulting expression contains two contributions, one proportional

to s and the other to t times the functions which depend only on s. For this reason one has

two coupled recursive relations and hence two coupled differential equations. The resulting

expression has the form

ΣL2(s, t, z) =
1

2s2z2

[
27

(
esz/3 − 1− sz

3
− 1

2

s2z2

9
− 1

6

s3z3

27

)(
1 + 2

t

s

)
−
(
esz − 1− sz − 1

2
s2z2 − 1

6
s3z3

)]
. (3.3)

This expression has properties similar to the previous one. Depending on the sign of s, it

tends either to infinity or to a constant. We will see later that the sum of two ladders (3.2)

and (3.3) gives a better approximation to the full answer.

D=8. In the case of D=8, the ladder diagrams start already with one loop. They also

depend only on s so that in eq. (2.5) all integrals are trivial for the first terms in the bracket

while the second terms do not contribute to the s-ladder like in the previous case. Then

eq. (2.5) is reduced to the ordinary nonlinear differential equation

dΣL(s, z)

dz
= − 1

3!
+

2

4!
ΣL(s, z)− 2

5!
Σ2
L(s, z), ΣL(s, 0) = 0. (3.4)

Note that ΣL(s, z) here is also dimensionless and depends on a single dimensionless

argument s2z.

– 5 –
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This is the Riccati type equation with constant coefficients. Its solution has the form

ΣL(s, z) = −
√

5/3
4 tan(zs2/(8

√
15))

1− tan(zs2/(8
√

15))
√

5/3
. (3.5)

This function possesses an infinite number of periodical poles and has no limit when

z → ∞ (ε → 0) independently of kinematics. We will see that as in the previous case of

D=6 the full solution inherits this property.

D=10. The situation in this case reminds that for D=8 but is more complicated since

the genuine box diagram in D=10 contrary to D=8 is not a constant but is proportional

to (s + t). Consequently, the s-ladder has dimension m2 and consists of two parts, one

proportional to s and the other to t times the function of s

ΣL(s, t, z) = sΣLs(s, z) + tΣLt(s, z). (3.6)

Similar to the D=8 case, eq. (2.6) is reduced to the ordinary nonlinear differential

equation, however, here we obtain two coupled equations for ΣLs(s, z) and ΣLt(s, z). The

simplest way to get them is to use the recursive relations [16]

dΣLt(s, z)

dz
= − 1

5!
+

4

7!
ΣLt(s, z)− 1

3 ∗ 7!
Σ2
Lt(s, z), ΣLt(s, 0) = 0, (3.7)

dΣLs(s, z)

dz
= − 1

5!
+

2

3 ∗ 5!
ΣLs(s, z)− 12

7!
ΣLt(s, z)

− 3!

7!

(
Σ2
Ls(s, z)−ΣLs(s, z)ΣLt(s, z)+

5

18
Σ2
Lt(s, z)

)
, ΣLs(s, 0) = 0. (3.8)

Note that both functions are dimensionless and depend on a single dimensionless

argument s3z.

The solution to the first equation is

ΣLt(s, z) = 3

(
2 +
√

10 tan

[
−
√

10zs3 − 5040 arctan[
√

2/5]

5040

])
, (3.9)

while for the second one it might be expressed in the form

ΣLs(s, z) =
1

2
ΣLt(s, z) + ∆(s, z), (3.10)

where the function ∆(s, z) obeys the nonlinear differential equation

d∆(s, z)

dz
= − 1

2 ∗ 5!
+

2

3 ∗ 5!
∆(s, z)− 6

7!
∆2(s, z), ∆(s, 0) = 0. (3.11)

This is also a dimensionless function of a single dimensionless variable s3z. The solution

to eq. (3.11) is

∆(s, z) = −(3(14 +
√

70)(−1 + ezs
3/(36

√
70))

2(19 + 2
√

70− 9ezs3/(36
√

70))
. (3.12)
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Summarizing one has the following expression for the ladder diagram

ΣL(s, t, z) = s

(
1

2
ΣLt(s, z)

(
1 + 2

t

s

)
+ ∆(s, z)

)
, (3.13)

where ΣLt(s, z) and ∆(s, z) are given by eqs. (3.9) and (3.12), respectively. The behaviour

of ΣLt is similar to ΣL in the D=8 case. It possesses an infinite number of periodical poles.

The function ∆ has a single pole for positive values of s.

3.2 The general case

Here we analyze the full equations (2.4), (2.5), (2.6) which reproduce the sum of all the

diagrams. As one can see, these equations are integro-differential and cannot be treated

analytically. Instead, we perform a numerical study of these equations though this is

also not straightforward. The reason is that one cannot use the standard recursive algo-

rithm since the functions in the r.h.s. stand under the integral sign and depend on the

integration variables.

Therefore, we apply the following method which is the combination of numerical and

successive approximation approaches. At the beginning we choose some constant value of

the function Σ(s, t, z) = Σ0(s, t, z) = const from which the procedure starts. If we consider

the interval beginning from z0 = 0, the obvious choice is const = 0. Then, we substitute it

into the r.h.s. of the equation and perform the formal integration. Replacing the derivative

in the l.h.s. by the finite difference (Σ1(s, t, z) − Σ0(s, t, z))/∆z, we finally get the next

approximation for Σ

Σ1(s, t, z) = Σ0(s, t, z) + ∆z ∗ r.h.s., (3.14)

which is now a polynomial over s and t. At this step, the r.h.s. is calculated with Σ0(s, t′, z)

equal to a constant.

Moving forward to the next step, we substitute the obtained polynomial for Σ1(s, t, z)

into the r.h.s., change the arguments t→ tx+uy and t→ −sx, and perform the integration.

This generates the next approximation value of Σ: Σ2(s, t, z). Continuing this way we

generate the higher order polynomials of s and t at each step. However, starting from

3-4 iterations the length of polynomials becomes too high to continue. At this step, we

evaluate Σ with fixed values of s and t, for instance, s=t=1. The calculated value gives us

a constant which we identify with the value of Σ at the point z0 + ∆z. We then use it to

start the same procedure again for the next point.

This way we calculate the values of Σ at the points along the axis z = z0+∆z∗n. Then

we interpolate all the obtained points getting a smooth function. Note that when applying

numerical computation one has to fulfill the following requirements: a sufficient degree

of smoothness of the calculation and minimization of time spent on its implementation.

Experimentally, the step ∆z = 0.1 has been found to meet these requirements and also

made the solution stable. And though this method is not justified, numerical results show

a very good approximation being applied to known functions.

It is worth mentioning that after the evaluation of the function Σ, we can replace

its argument having in mind that on dimensional grounds it depends on dimensionless

– 7 –
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combinations zs, zs2 and zs3 (and the same for t) for D = 6, 8 and D = 10, respectively.

We use these substitutions in the next section to plot the results.

One should also mention that in D = 8, 10 the form of eq. (2.5), (2.6) is not very

suitable for numerical analysis because the second term contains the infinite sum with an

infinite number of derivatives. The necessity to cut this sum makes the numerical solution

unstable. To avoid this problem, we notice that the construction reminds the usual shift

operator with slightly changed coefficients. One can prove that the infinite sum might be

removed by introducing two additional integrations using the following formula:

∞∑
p=0

(BC)pk!

p!(p+ k + 1)!

(
dp

dAp
f(A)

)2

(3.15)

=
1

2π

∫ π

−π
dτ

∫ 1

0
dξ(1− ξ)kf(A+ exp(iτ)Bξ)f(A+ exp(−iτ)C).

Two additional integrals do not cause any trouble for numerical integration. We use this

trick for calculations in the case of D = 8 and D = 10.

The realization of the advocated procedure in the case of D = 8 is presented in the

form of the Mathematica code written below.

L = {0}; (*starting value*)

h = 0.1; (*step value*)

Do[l = {L[[d]]};

For[i = 1, i <= 3, i++,

l = Append[l,

l[[i]] + (-h/12 +

2 h s^2 Integrate[

Integrate[

y (1 - x) ( l[[i]] + ( l[[i]] /. {t -> s, s -> t})) /.

t -> t x - t y - s y, {y, 0, x}], {x, 0, 1}] -

If[i > 2,

s^4 h Integrate[

x^2 (1 - x)^2 Integrate[

Integrate[(1 - kc) (l[[i]] /.

t -> -s x +

Exp[I ta] t (1 - x) kc) ((l[[i]] /. {t -> s,

s -> t}) /. t -> -s x + Exp[-I ta] s x) , {kc, 0,

1}], {ta, -Pi, Pi}], {x, 0, 1}], 0])]];

z = (l + (l /. {t -> s, s -> t}))/2;

L = Append[L,

Delete[z, {{1}, {2}, {3}}][[1]] /. s -> 1 /. t -> 1], {d, 3}]

A drawback of this approach is hidden in the fact that the procedure does not depend

on z, i.e., we reconstruct the form of the solution but do not fix it on the z-axis. In other

words, the position of the solution is not absolute but relative. In the region starting from

– 8 –
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z = 0 to the first pole, this problem is absent since we know that at the beginning the

function equals 0. In the next region between the first and the second poles, one should

choose the starting point which is close to the pole and start the procedure until it reaches

the second pole. Then one continues the same way for the next intervals.

We performed the described calculations for all three cases D = 6, 8, 10. The results

are presented in the next section.

4 Comparison of PT, Pade, Ladder and Numerics

In this section, we compare the results of calculation of the leading order divergences given

by eqs. (2.4), (2.5), (2.6) using the PT, Pade approximation, Ladder approximation and

numerical solution described above.

For comparison we use the first 15 terms of PT generated with the help of recursive

relations. This seems to be by far enough since the successive terms of PT fall rapidly.

The next step is the use of the Pade approximation. It is not always stable since the

Pade approximants sometimes possess fictitious poles. This is a well known feature and

we tried to avoid it taking mainly diagonal approximants. With 15 terms of PT the [6/6],

[6/7] and [7/7] approximants are almost identical and give a smooth function.

The third curve on the plots corresponds to the ladder approximation. Here the

analytical solutions are given by eqs. (3.2), (3.5), (3.9), (3.12) from the previous section.

In the case of D=6 we also considered the second ladder which is based on the tennis-court

diagram in the t-channel (see figure 2) and is given by eq. (3.3).

At last, we plot the numerical solution obtained via the iteration procedure described

above. In the case when the function possesses poles we built the numerical solution

separately for each finite interval.

The function of interest Σ(s, t, z) is the function of three variables. However, as it

was already mentioned, on dimensional grounds it has only two independent dimensionless

arguments. In D = 6, 8 and 10 dimensions they are zs, zt, zs2, zt2 and zs3, zt3, respectively.

For a better presentation we constructed both the two-dimensional plots with t = s and

the 3-dimensional ones in the s− t plane.

D=6. In D=6 the PT series looks like

ΣPT(s, t, z) =
(s+ t)z

3
+

(s2 + st+ t2)z2

18
+

(5s3 + 2s2t+ 2st2 + 5t3)z3

540

+
(25s4 + 8s3t− 2s2t2 + 8st3 + 25t4)z4

19440
+ . . . , (4.1)

where the dots stand for the higher order terms. We used 15 terms for numerical comparison

with the other approaches.

From eq. (4.1) we constructed the diagonal Pade approximant [7/7] as a function of a

new variable x = zs in the case when t = s. It has the form

ΣPade(x) =
0.67x+ 0.067x2 + 0.0010x3 + 0.00014x4 + 4.6 · 10−5x5+

1− 0.15x+ 0.00013x2 + 0.0011x3 − 4.5 · 10−5x4 − 2.1 · 10−6x5+
→

← +3.7 · 10−6x6 + 1.2 · 10−7x7

+1.7 · 10−7x6 − 2.1 · 10−9x7
. (4.2)
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Figure 3. Comparison of various approaches to solve eq. (2.4): PT, Pade, Ladder and Numerics.

The PT curves and Pade coincide in a given interval. The red line is the numerical solution, the

green one is the PT, the blue one is the Pade approximation. The yellow line represents the ladder

analytical solution.

Figure 4. Comparison of PT, Ladder and Two-Ladder approximations.

The ladder approximation is given by eq. (3.2) and the second ladder by eq. (3.3) with

x = zs. The numerical solution starts from z = 0 and has only one interval in this case.

To demonstrate the behaviour of the function Σ obtained by various approaches and

to compare them all, we plot them together. The first plot shown in figure 3 contains

five different curves corresponding to five approaches: the PT, Pade approximation, ladder

approximation, two-ladder approximation and the numerical solution.

The second plot is the 3-dimensional one shown in figure 4. Here we plot PT, the

ladder approximation and the two-ladder approximation.

One can see on the first plot that all the curves practically have the same behaviour.

Analytically, it is perfectly described by the ladder approximation. This is also confirmed

by the 3-dimensional plot shown in figure 4. The inclusion of the second ladder does

not change the solution qualitatively but provides a better correspondence with PT. The

function Σ has no limit when x → ∞ (ε → 0) for s > 0 and tends to a fixed point when

s < 0. This limit would correspond to removing the UV regularization. One can see that

summation of the whole infinite series does not improve the situation. One can not just

remove the UV regularization and get a finite theory.
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Figure 5. Comparison of various approaches to solve eq. (2.5). The red and black lines are the

numerical solutions The green one is the PT. The blue one is the Pade approximation. The yellow

one represents the Ladder analytical solution.

D=8. In the case of D=8, the PT series starts already from one loop and has the form

ΣPT(s, t, z) =
z

6
+
s2 + t2

144
z2 +

15s4 − s3t+ s2t2 − st3 + 15t4

38880
z3 (4.3)

+
8385s6 − 268s5t+ 206s4t2 − 192s3t3 + 206s2t4 − 268st5 + 8385t6

391910400
z4 + . . .

For t = s the [7/6] the Pade approximant is

ΣPade(x) =
1

s2

0.17x− 0.017x2 + 0.00040x3 + 0.000014x4 − 7.1 · 10−7x5+

1− 0.19x+ 0.014x2 − 0.00046x3 + 6.9 · 10−6x4 − 1.5 · 10−8x5−
→

← +7.5 · 10−9x6 + 1.2 · 10−10x7

−5.5 · 10−10x6
, (4.4)

where now x = zs2.

The ladder approximation is given by eq. (3.5). The numerical solution starts from

z = 0 and goes up to the first pole z = z1. Then we start it again at some z > z1 and

arrive at the second pole at z = z2, etc. The poles coincide with those of the ladder

approximation (3.5) thus confirming that the ladder approximation gives a correct picture

of the full answer.

The comparison of various curves for t = s is shown in figure 5. One can see that in

the first interval all curves practically coincide. The PT curve exists only in the interval

below the first pole. The Pade curve reproduces the first pole but fails with the other ones.

The numerical curve reproduces both poles and is close to the ladder approximation.

We present also the 3-dimensional plot in the s− t plane for z = 1 in figure 6. One can

see that the ladder diagrams, like in the case of D = 6, give a very accurate approximation

to a full PT and allow one to go beyond the first pole. The comparison of the ladder

approximation and numerical solution of the full equation justifies our conclusion that the

ladder approximation reproduces the correct behaviour of the function.

Again, we have to admit that the limit x → ∞ (ε → 0) does not exist. The function

Σ has an infinite number of periodic poles for any choice of kinematics. Therefore, the UV

finiteness is not reached when the sum over all loops is taken into account.
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(a) (b) (c)

Figure 6. Comparison of PT (a) and the ladder approximation (b) in the region up to the first

pole. The last plot (c) shows the ladder approximation beyond the first pole. One can clearly see

the pole structure of the function Σ.

D=10. This case is quite similar to the D = 8 one. Now the PT series now is

ΣPT(s, t, z)=
(s+ t)z

120
+

(4s4 + s3t+ st3 + 4t4)z2

302400
+ (4.5)

+
(2095s7+115s6t+33s5t2−11s4t3−11s3t4+33s2t5+115st6+2095t7)z3

68584320000
+ . . .

while the [6/7] Pade approximation for t = s reads

ΣPade(x) =
1

s2

0.017x+ 0.00025x2 + 6.5 · 10−7x3 − 5.7 · 10−10x4−
1 + 0.013x+ 9.4 · 10−6x2 − 1.1 · 10−7x3 − 7.2 · 10−11x4+

→

← −2.1 · 10−12x5 + 2.6 · 10−16x6 + 7.3 · 10−19x7

+1.9 · 10−13x5 − 6.4 · 10−17x6 + 4.6 · 10−21x7
, (4.6)

where x = zs3.

The ladder approximation is given by eqs. (3.13) and the numerical one is again con-

structed first for the interval from z = 0 to the first pole and then continued to the

second one, etc.

The comparison of all the curves is shown in figure 7. In figure 8, we also show the

3-dimensional plot. The situation here is the same as in the case of D = 8. The ladder

approximation works pretty well and its analytical solution qualitatively describes all the

features of the full equation. The function Σ possesses an infinite number of periodic poles

and one separate pole comes from ∆ (3.12). There is no UV finite limit.

5 Subleading divergences in D=8

The analysis of the leading divergences performed in the previous sections can be extended

to the subleading ones. Despite the non-renormalizability of the theory due to locality of

the R′-operation the leading divergences in all loops are governed by the one loop term

while the subleading divergences by the two loop ones. We showed how this procedure

explicitly works in the theories of interest in [17]. There the recursive relations for the

subleading terms as well as the differential equations for the all loop sum were obtained
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Figure 7. Comparison of various approaches to solve eq. (2.6). The red and black lines are the

numerical solutions described in the previous section before the first pole and the first and the

second ones. The green one is the PT. The blue one is the Pade approximation. The yellow line

represents the Ladder analytical solution.

(a) (b) (c)

Figure 8. Comparison of PT (a) and the ladder approximation (b) in the region up to the first

pole. The last plot (c) shows the ladder approximation beyond the first pole. One can clearly see

the pole structure of the function Σ.

for the ladder type diagrams in D=8. In principle, one can get the corresponding relations

for the full set of diagrams; however, on the one hand, they are too cumbersome and, on

the other hand, the ladder type diagrams seem to give a very good approximation to the

full result and allow for the analytic solution.

First of all let us remind the relations obtained in [17]. The subleading divergences for

the s-ladder type diagrams in all loops are given by the sum of two functions proportional

to s and t

ΣSub(s, t, z) = sΣs(s, z) + tΣt(s, z). (5.1)

These functions depend on the single dimensionless argument x = zs2 and are expressed

in terms of some auxiliary functions Σ′s and Σ′t which obey the second order differential

equations. One has

d2Σ′t(x)

dx2
− 1

30

dΣ′t(x)

dx
+

Σ′t(x)

720
= − 1

432
, (5.2)

dΣt(x)

dx
=

1

60
x
dΣ′t(x)

dx
− Σ′t(x)

60
− xΣ′t(x)

720
− x

432
.
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with the solution

Σ′t(x) =
5

6

[
ex/60(− sin[x/30] + 2 cos[x/30])− 2

]
(5.3)

Σt(x) = − 1

36

[
60 + x+ ex/60(−(60 + x) cos[x/30]− 2(−15 + x) sin[x/30])

]
.

For the function Σ′s(x) the equation is slightly more complicated

d2Σ′s(x)

dx2
+ f1(x)

dΣ′s(x)

dx
+ f2(x)Σ′s(x) = f3(x), (5.4)

where

f1(x) = −1

6
+

ΣL

15
,

f2(x) =
1

80
− ΣL

120
+

Σ2
L

600
+

1

15

dΣL

dx
,

f3(x) =
2321

5!5!2
ΣL +

11

1800
Σ′t −

469

5!90
Σ2
L −

442

5!5!6
ΣLΣ′t +

23

6750
Σ3
L +

1

1200
Σ2
LΣ′t

− 19

36

dΣL

dx
− 1

15

dΣ′t
dx

+
23

225

dΣ2
L

dx
+

1

30

d(ΣLΣ′t)

dx
− 3

32
.

ΣL(x) being the leading ladder given by eq. (3.5). Then the function Σs(x) is given by

Σs(x) =

(
x
d

dx
− 1

)
Σ′s − x

(
−19

72
ΣL +

1

12
Σ′s −

1

30
Σ′t +

23

450
Σ2
L −

1

30
ΣLΣ′s +

1

60
ΣLΣ′t

)
.

(5.5)

The above equation for Σ′s is difficult to solve and analyze analytically. However, from the

form of the r.h.s. one can deduce that it has poles governed by ΣL. Indeed, numerical study

of this equation proves that Σ′s (and Σs) inherits all the poles of ΣL, as can be seen in

figure 9 on the left where we have plotted the numerical solution for Σs together with ΣL.

Further, the linear inhomogeneous differential equation (5.4) can be simplified by the

substitution Σ′s(x) = dΣL
dx u(x) so that the function u(x) obeys the equation [17]

u′′(x) = f3(x)/
dΣL

dx
. (5.6)

Numerical integration of this equation reveals that the function u(x) is a regular function

without singularities (see figure 9 on the right). Hence the functions Σ′s(x) and Σs(x) are

essentially governed by dΣL
dx and follow its analytical properties.

Thus, we conclude that the subleading divergences follow the pattern of the leading

ones and have the same properties. The sum of the subleading contributions in all loops

behaves like the sum of the leading poles and has no finite UV limit.

6 Discussion

Summarizing the presented analysis of the UV divergences in maximally supersymmetric

gauge theories we have to underline once more that the leading as well as the subleading

divergences are governed by the structure of the R′-operation and can be evaluated starting

from the one and two loop diagrams, respectively, with the help of the RG equations. This

reasoning is valid for all further subsubleading divergent terms.
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Figure 9. Numerical solution for Σs together with ΣL (left). Numerical evaluation of u(x) (right).

We have presented explicit formulas confirming this statement and have demonstrated

how the higher terms can be calculated from the lower ones via pure algebraic recursive

relations. The corresponding equations generalize the usual renormalization group relations

for the pole terms in the case of non-renormalizable interactions.These equations take the

integro-differential form and do not admit simple solutions. They can be simplified for

particular sets of diagrams, as can be seen by the example of the ladder type graphs.

Even this task happened to be quite complicated when going to the subleading terms

and we were bound to use numerical methods. However, the result of summation of sub-

leading divergences does not lead to any qualitative difference from the leading terms. All

the main features of the leading divergences keep untouched.

The numerical solution of these RG equations shows that the leading divergences

qualitatively are very well described by the ladder approximation which admits the explicit

analytical solution and can be analysed. The form of this solution in D = 6, 8 and 10

dimensions suggests that one cannot get rid of the UV divergences by simply removing the

regularization since the obtained solutions have no limit when ε → 0. Indeed, in D = 6

this limit depends on the kinematics and there is no way to make all the amplitudes finite

in all channels simultaneously. As for the D = 8 and 10 case, the corresponding functions

have an infinite number of poles and the point ε = 0 is unreachable.

Thus, we see that the maximally supersymmetric gauge theories, despite numerous

cancelations of divergent diagrams (the bubbles and triangles), still contain the divergent

diagrams in all orders of PT even on-shell and their summation to all orders does not

improve the situation. This means that these theories remain non-renormalizable and the

knowledge of the all order result does not help to get a finite theory. It might be different if

the summation procedure produced the function which possesses the finite limit in removing

the regularization, which was the original motivation of this analysis.

This conclusion might seem disappointing; however, we believe that the knowledge

of the infinite series of divergent terms can be useful to remove the arbitrariness of the

subtraction procedure and get a meaningful theory. This theory, however, would contain

an infinite number of terms in the Lagrangian. Since these theories can be considered as

the world-volume theories of stacks of branes it is interesting to look at problem from this

end. However, the properties of the UV-completion in this case remain to be explored.
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