4,925 research outputs found

    Post-hoc derivation of SOHO Michelson doppler imager flat fields

    Get PDF
    <p><b>Context:</b> The SOHO satellite now offers a unique perspective on the Sun as it is the only space-based instrument that can provide large, high-resolution data sets over an entire 11-year solar cycle. This unique property enables detailed studies of long-term variations in the Sun. One significant problem when looking for such changes is determining what component of any variation is due to deterioration of the instrument and what is due to the Sun itself. One of the key parameters that changes over time is the apparent sensitivity of individual pixels in the CCD array. This can change considerably as a result of optics damage, radiation damage, and aging of the sensor itself. In addition to reducing the sensitivity of the telescope over time, this damage significantly changes the uniformity of the flat field of the instrument, a property that is very hard to recalibrate in space. For procedures such as feature tracking and intensity analysis, this can cause significant errors.</p> <p><b>Aims:</b> We present a method for deriving high-precision flat fields for high-resolution MDI continuum data, using analysis of existing continuum and magnetogram data sets.</p> <p><b>Methods:</b> A flat field is constructed using a large set (1000-4000 frames) of cospatial magnetogram and continuum data. The magnetogram data is used to identify and mask out magnetically active regions on the continuum data, allowing systematic biases to be avoided. This flat field can then be used to correct individual continuum images from a similar time.</p> <p><b>Results:</b> This method allows us to reduce the residual flat field error by around a factor 6-30, depending on the area considered, enough to significantly change the results from correlation-tracking analysis. One significant advantage of this method is that it can be done retrospectively using archived data, without requiring any special satellite operations.</p&gt

    Balltracking: an highly efficient method for tracking flow fields

    Get PDF
    We present a method for tracking solar photospheric flows that is highly efficient, and demonstrate it using high resolution MDI continuum images. The method involves making a surface from the photospheric granulation data, and allowing many small floating tracers or balls to be moved around by the evolving granulation pattern. The results are tested against synthesised granulation with known flow fields and compared to the results produced by Local Correlation tracking (LCT). The results from this new method have similar accuracy to those produced by LCT. We also investigate the maximum spatial and temporal resolution of the velocity field that it is possible to extract, based on the statistical properties of the granulation data. We conclude that both methods produce results that are close to the maximum resolution possible from granulation data. The code runs very significantly faster than our similarly optimised LCT code, making real time applications on large data sets possible. The tracking method is not limited to photospheric flows, and will also work on any velocity field where there are visible moving features of known scale length

    Fast algorithm for border bases of Artinian Gorenstein algebras

    Get PDF
    Given a multi-index sequence σ\sigma, we present a new efficient algorithm to compute generators of the linear recurrence relations between the terms of σ\sigma. We transform this problem into an algebraic one, by identifying multi-index sequences, multivariate formal power series and linear functionals on the ring of multivariate polynomials. In this setting, the recurrence relations are the elements of the kerne lII\sigma of the Hankel operator $H$\sigma associated to σ\sigma. We describe the correspondence between multi-index sequences with a Hankel operator of finite rank and Artinian Gorenstein Algebras. We show how the algebraic structure of the Artinian Gorenstein algebra AA\sigmaassociatedtothesequence associated to the sequence \sigma yields the structure of the terms $\sigma\alphaforall for all α\alpha \in N n.Thisstructureisexplicitlygivenbyaborderbasisof. This structure is explicitly given by a border basis of Aσ\sigma,whichispresentedasaquotientofthepolynomialring, which is presented as a quotient of the polynomial ring K[x 1 ,. .. , xn]bythekernel] by the kernel Iσ\sigmaoftheHankeloperator of the Hankel operator Hσ\sigma.Thealgorithmprovidesgeneratorsof. The algorithm provides generators of Iσ\sigmaconstitutingaborderbasis,pairwiseorthogonalbasesof constituting a border basis, pairwise orthogonal bases of Aσ\sigma$ and the tables of multiplication by the variables in these bases. It is an extension of Berlekamp-Massey-Sakata (BMS) algorithm, with improved complexity bounds. We present applications of the method to different problems such as the decomposition of functions into weighted sums of exponential functions, sparse interpolation, fast decoding of algebraic codes, computing the vanishing ideal of points, and tensor decomposition. Some benchmarks illustrate the practical behavior of the algorithm

    The evolution of electron overdensities in magnetic fields

    Get PDF
    When a neutral gas impinges on a stationary magnetized plasma an enhancement in the ionization rate occurs when the neutrals exceed a threshold velocity. This is commonly known as the critical ionization velocity effect. This process has two distinct timescales: an ion–neutral collision time and electron acceleration time. We investigate the energization of an ensemble of electrons by their self-electric field in an applied magnetic field. The evolution of the electrons is simulated under different magnetic field and density conditions. It is found that electrons can be accelerated to speeds capable of electron impact ionization for certain conditions. In the magnetically dominated case the energy distribution of the excited electrons shows that typically 1% of the electron population can exceed the initial electrostatic potential associated with the unbalanced ensemble of electrons

    A Quantum Approach to Classical Statistical Mechanics

    Get PDF
    We present a new approach to study the thermodynamic properties of dd-dimensional classical systems by reducing the problem to the computation of ground state properties of a dd-dimensional quantum model. This classical-to-quantum mapping allows us to deal with standard optimization methods, such as simulated and quantum annealing, on an equal basis. Consequently, we extend the quantum annealing method to simulate classical systems at finite temperatures. Using the adiabatic theorem of quantum mechanics, we derive the rates to assure convergence to the optimal thermodynamic state. For simulated and quantum annealing, we obtain the asymptotic rates of T(t)(pN)/(kBlogt)T(t) \approx (p N) /(k_B \log t) and γ(t)(Nt)cˉ/N\gamma(t) \approx (Nt)^{-\bar{c}/N}, for the temperature and magnetic field, respectively. Other annealing strategies, as well as their potential speed-up, are also discussed.Comment: 4 pages, no figure

    Animal movements in the Kenya Rift and evidence for the earliest ambush hunting by hominins

    Get PDF
    Animal movements in the Kenya Rift Valley today are influenced by a combination of topography and trace nutrient distribution. These patterns would have been the same in the past when hominins inhabited the area. We use this approach to create a landscape reconstruction of Olorgesailie, a key site in the East African Rift with abundant evidence of large-mammal butchery between ~1.2 and ~0.5 Ma BP. The site location in relation to limited animal routes through the area show that hominins were aware of animal movements and used the location for ambush hunting during the Lower to Middle Pleistocene. These features explain the importance of Olorgesailie as a preferred location of repeated hominin activity through multiple changes in climate and local environmental conditions, and provide insights into the cognitive and hunting abilities of Homo erectus while indicating that their activities at the site were aimed at hunting, rather than scavenging
    corecore