2,096 research outputs found

    Effects of sidewall geometry on the installed performance of nonaxisymmetric convergent-divergent exhaust nozzles

    Get PDF
    The investigation was conducted at static conditions and over a Mach number range from 0.6 to 1.2. Angle of attack was held constant at 0 deg. High pressure air was used to simulate jet exhaust flow at ratios of jet total pressure to free-stream static pressure from 1 (jet off) to approximately 10. Sidewall cutback appears to be a viable way of reducing nozzle weight and cooling requirements without compromising installed performance

    Effects of twin-vertical-tail parameters on twin-engine afterbody/nozzle aerodynamic characteristics

    Get PDF
    The Langley 16-foot transonic tunnel was used to determine the effects of several empennage and afterbody parameters on twin-engine aft-end aerodynamic characteristics. Model variables included twin-vertical-tail cant angle, toe angle, airfoil camber, and root-chord length and afterbody/engine interfairing shape. Tests were conducted over a Mach number range from 0.6 to 1.2 and over an angle-of-attack range from 2 deg to 10 deg. Nozzle pressure ratio was varied from 1.0 (jet off) to approximately 10.0

    Theoretical Limb Darkening for Classical Cepheids: II. Corrections for the Geometric Baade-Wesselink Method

    Full text link
    The geometric Baade-Wesselink method is one of the most promising techniques for obtaining a better calibration of the Cepheid period-luminosity relation by means of interferometric measurements of accurate diameters. In this paper we present new wavelength- and phase-dependent limb darkening corrections based on our time-dependent hydrodynamic models of the classical Cepheid zeta Gem. We show that a model simulation of a Cepheid atmosphere, taking into account the hydrodynamic effects associated with the pulsation, shows strong departures from the limb darkening otherwise predicted by a static model. For most of its pulsational cycle the hydrodynamic model predicts a larger limb darkening then the equivalent static model. The hydrodynamics affects the limb darkening mainly at UV and optical wavelengths. Most of these effects evolve slowly as the star pulsates, but there are phases, associated with shocks propagating into the photosphere, in which significant changes in the limb darkening take place on time-scales of the order of less than a day. We assess the implication of our model LD corrections fitting the geometric Baade-Wesselink distance of zeta Gem for the available near-IR PTI data. We discuss the effects of our model limb darkening on the best fit result, and analyze the requirements needed to test the time-dependence of the limb darkening with future interferometric measurements.Comment: 22 pages, 5 figures, to be published on the Astrophysical Journal, June 1 2003 issu

    An Evaluation of MODIS 250-m Data for Green LAI Estimation in Crops

    Get PDF
    Green leaf area index (LAI) is an important variable for climate modeling, estimates of primary production, agricultural yield forecasting, and many other diverse applications. Remotely sensed data provide considerable potential for estimating LAI at local, regional, and global scales. The goal of this study was to retrieve green LAI from MODIS 250-m vegetation index (VI) data for irrigated and rainfed maize and soybeans. The performance of both MODIS-derived NDVI and Wide Dynamic Range Vegetation Index (WDRVI) were evaluated across three growing seasons (2002 through 2004) over a wide range of LAI and also compared to the performance of NDVI and WDRVI derived from reflectance data collected at close-range across the same field locations. The NDVI vs. LAI relationship showed asymptotic behavior with a sharp decrease in the sensitivity of the NDVI to LAI exceeding 2 m2/m2 for both crops. WDRVI vs. LAI relation was linear across the entire range of LAI variation with determination coefficients above 0.93. Importantly, the coefficients of the close-range WDRVI vs. LAI equation and the MODIS-retrieved WDRVI vs. LAI equation were very close. The WDRVI was found to be capable of accurately estimating LAI across a much greater LAI range than the NDVI and can be used for assessing even slight variations in LAI, which are indicative of the early stages of plant stress. These results demonstrate the new possibilities for analyzing the spatio-temporal variation of the LAI of crops using multi-temporal MODIS 250-m imagery

    Carbon isotope ratios of Great Plains soils and in wheat-fallow systems

    Get PDF
    Includes bibliographical references (pages 1076-1077).The purposes of this study were to improve knowledge of regional vegetation patterns of C3 and C4 plants in the North American Great Plains and to use δ13C methodology and long-term research sites to determine contributions of small-grain crops to total soil organic carbon (SOC) now present. Archived and recent soil samples were used. Detailed soil sampling was in 1993 at long-term sites near Akron, CO, and Sidney, NE. After soil sieving, drying, and deliming, SOC and δ13C were determined using an automated C/N analyzer interfaced to an isotope-ratio mass spectrometer. Yield records from long-term experimental sites were used to estimate the amount of C3 plant residue C returned to the soil. Results from δ13C analyses of soils from near Waldheim, Saskatchewan, to Big Springs, TX, showed a strong north to south decrease in SOC derived from C3 plants and a corresponding increase from C4 plants. The δ13C analyses gave evidence that C3 plant residue C (possibly from shrubs) is increasing at the Big Springs, TX, and Lawton, OK, sites. Also, δ13C analyses of subsoil and topsoil layers shows evidence of a regional shift to more C3 species, possibly because of a cooler climate during the past few hundreds to thousands of years. Data from long-term research sites indicate that the efficiency of incorporation of small-grain crop residue C was about 5.4% during 84 year at Akron, CO, and about 10.5% during 20 year at Sidney, NE. The 14C age of the SOC at 0- to 10-cm depth was 193 year and at 30 to 45 cm was 4000 yr; 14C age of nonhydrolyzable C was 2000 and 7000 year for these same two respective depths. Natural partitioning of the 13C isotope by the photosynthetic pathways of C3 and C4 plants provides a potentially powerful tool to study SOC dynamics at both regional and local scales

    Proteomic and Isotopic Response of Desulfovibrio vulgaris to DsrC Perturbation

    Get PDF
    Dissimilatory sulfate reduction is a microbial energy metabolism that can produce sulfur isotopic fractionations over a large range in magnitude. Calibrating sulfur isotopic fractionation in laboratory experiments allows for better interpretations of sulfur isotopes in modern sediments and ancient sedimentary rocks. The proteins involved in sulfate reduction are expressed in response to environmental conditions, and are collectively responsible for the net isotopic fractionation between sulfate and sulfide. We examined the role of DsrC, a key component of the sulfate reduction pathway, by comparing wildtype Desulfovibrio vulgaris DSM 644T to strain IPFG07, a mutant deficient in DsrC production. Both strains were cultivated in parallel chemostat reactors at identical turnover times and cell specific sulfate reduction rates. Under these conditions, sulfur isotopic fractionations between sulfate and sulfide of 17.3 ± 0.5‰ or 12.6 ± 0.5‰ were recorded for the wildtype or mutant, respectively. The enzymatic machinery that produced these different fractionations was revealed by quantitative proteomics. Results are consistent with a cellular-level response that throttled the supply of electrons and sulfur supply through the sulfate reduction pathway more in the mutant relative to the wildtype, independent of rate. We conclude that the smaller fractionation observed in the mutant strain is a consequence of sulfate reduction that proceeded at a rate that consumed a greater proportion of the strains overall capacity for sulfate reduction. These observations have consequences for models of sulfate reducer metabolism and how it yields different isotopic fractionations, notably, the role of DsrC in central energy metabolism

    Cryptococcal aortitis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27480/1/0000523.pd

    Distraction from pain and executive functioning: an experimental investigation of the role of inhibition, task switching and working memory

    Get PDF
    Although many studies have investigated the effectiveness of distraction as a method of pain control, the cognitive processes by which attentional re-direction is achieved, remain unclear. In this study the role of executive functioning abilities (inhibition, task switching and working memory) in the effectiveness of distraction is investigated. We hypothesized that the effectiveness of distraction in terms of pain reduction would be larger in participants with better executive functioning abilities. Ninety-one undergraduate students first performed executive functioning tasks, and subsequently participated in a cold pressor task (CPT). Participants were randomly assigned to (1) a distraction group, in which an attention-demanding tone-detection task was performed during the CPT, or (2) a control group, in which no distraction task was performed. Participants in the distraction group reported significantly less pain during the CPT, but the pain experience was not influenced by executive functioning abilities. However, the performance on the distraction task improved with better inhibition abilities, indicating that inhibition abilities might be important in focussing on a task despite the pain
    • …
    corecore