323 research outputs found

    A Critical Evaluation of Structural Analysis Tools used for the Design of Large Composite Wind Turbine Rotor Blades under Ultimate and Cycle Loading

    Get PDF
    Rotor blades for 10-20MW wind turbines may exceed 120m. To meet the demanding requirements of the blade design, structural analysis tools have been developed individually and combined with commercial available ones by blade designers. Due to the various available codes, understanding and estimating the uncertainty introduced in the design calculations by using these tools is needed to allow assessment of the effectiveness of any future design modification. For quantifying the introduced uncertainty a reference base was established within INNWIND.EU in which the several structural analysis concepts are evaluated. This paper shows the major findings of the comparative work performed by six organizations (universities and research institutes) participating in the benchmark exercise. The case concerns a 90m Glass/Epoxy blade of a horizontal axis 10MW wind turbine. The detailed blade geometry, the material properties of the constitutive layers and the aero-elastic loads formed the base by which global and local blade stiffness and strength are evaluated and compared. Static, modal, buckling and fatigue analysis of the blade were performed by each partner using their own tools; fully in-house developed or combined with commercially available ones, with its specific structural analysis approach (thin wall theory and finite element models using beam, shell or solid elements) and their preferable analysis type (linear or geometrical non-linear). Along with sectional mass and stiffness properties, the outcome is compared in terms of displacements, stresses, strains and failure indices at the ply level of the blade structure, eigen-frequencies and eigen-modes, critical buckling loads and Palmgren-Miner damage indices due to cycle loading. Results indicate that differences between estimations range from 0.5% to even 40%, depending on the property compared. Modelling details, e.g. load application on the numerical models and assumptions, e.g. type of analysis, lead to these differences. The paper covers these subjects, presenting the modelling uncertainty derived

    Hidden spin-current conservation in 2d Fermi liquids

    Get PDF
    We report the existence of regimes of the two dimensional Fermi liquid that show unusual conservation of the spin current and may be tuned by varying some parameter like the density of fermions. We show that for reasonable models of the effective interaction the spin current may be conserved in general in 2d, not only for a particular regime. Low temperature spin waves propagate distinctively in these regimes and entirely new ``spin-acoustic'' modes are predicted for scattering-dominated temperature ranges. These new high-temperature propagating spin waves provide a clear signature for the experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR

    Contribution of Aquaporins to Cellular Water Transport Observed by a Microfluidic Cell Volume Sensor

    Get PDF
    Here we demonstrate that an impedance-based microfluidic cell volume sensor can be used to study the roles of aquaporin (AQP) in cellular water permeability and screen AQP-specific drugs. Human embryonic kidney (HEK-293) cells were transiently transfected with AQP3- or AQP4-encoding genes to express AQPs in plasma membranes. The swelling of cells in response to hypotonic stimulation was traced in real time using the sensor. Two time constants were obtained by fitting the swelling curves with a two-exponential function, a fast time constant associated with osmotic water permeability of AQP-expressing cells and a slow phase time constant associated mainly with water diffusion through lipid bilayers in the nontransfected cells. The AQP-expressing cells showed at least 10× faster osmotic water transport than control cells. Using the volume sensor, we examined the effects of Hg2+ and Ni2+ on the water transport via AQPs. Hg2+ inhibited the water flux in AQP3-expressing cells irreversibly, while Ni2+ blocked the AQP3 channels reversibly. Neither of the two ions blocked the AQP4 channels. The microfluidic volume sensor can sense changes in cell volume in real time, which enables perfusion of various reagents sequentially. It provides a convenient tool for studying the effect of reagents on the function and regulation mechanism of AQPs

    The average kinetic energy density of Cooper pairs above TcT_c in YBa2Cu3O7x{\rm YBa_2Cu_3O_{7-x}}, Bi2Sr2CaCu2O8+δ{\rm Bi_2Sr_2CaCu_2O_{8+\delta}}, and Nb{\rm Nb}

    Full text link
    We have obtained isofield curves for the square root of the average kinetic energy density of the superconducting state for three single crystals of underdoped YBa2Cu3O7xYBa_2Cu_3O_{7-x}, an optimally doped single crystal of Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta}, and Nb. These curves, determined from isofield magnetization versus temperature measurements and the virial theorem of superconductivity, probe the order parameter amplitude near the upper critical field. The striking differences between the Nb and the high-TcT_c curves clearly indicate for the latter cases the presence of a unique superconducting condensate below and above TcT_c

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    Intensity noise of injection-locked lasers: Quantum theory using a linearized input-output method

    Get PDF
    We derive analytical expressions for the quantum-noise spectra of an atomic laser using a linearized input-output method. We generalize the method to the problem of injection-locked lasers. We identify three distinct spectral noise regimes in the solution, unifying previous results. The approach offers insights into the physical processes and is especially suited for comparison with experiment. The quantum spectral noise properties of the pump laser and the injected laser appear explicitly in the solution
    corecore