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We derive analytical expressions for the quantum-noise spectra of an atomic laser using a linearized input-
output method. We generalize the method to the problem of injection-locked lasers. We identify three distinct
spectral noise regimes in the solution, unifying previous results. The approach offers insights into the physical
processes and is especially suited for comparison with experiment. The quantum spectral noise properties of
the pump laser and the injected laser appear explicitly in the solution.@S1050-2947~96!03710-9#

PACS number~s!: 42.50.2p

I. INTRODUCTION

The search for ever quieter light sources for applications
in communications and high precision interferometry has fu-
eled experimental interest in the noise properties of
injection-locked lasers@1,2#. In Ref.@1# it was shown that the
injection of a small signal into a pump noise suppressed
semiconductor laser could suppress small longitudinal side
modes while leaving the nonclassical noise characteristics of
the free-running laser unaffected. In contrast Ref.@2# found
that in Nd:YAG ~YAG denotes yttrium aluminum garnet!
lasers the free-running noise characteristics were suppressed
and the output noise was an amplified version of the injected
signal.

Although classical noise theories of injection locking
have been around for some time@3#, quantum-mechanical
theories are more recent@4–6#. A quantum theory is needed
when noise powers approach or go below the standard
quantum-noise limit~QNL!. In order to understand, moti-
vate, and model experimental research into injection locking
a fully quantum-mechanical theory which incorporates the
spectral noise properties and detunings of the various input
fields and unifies the apparently dissimilar results of Refs.
@1# and @2# is required. In this paper we present such a
theory. In a following paper@7# we obtain experimental re-
sults from miniature Nd:YAG lasers which are in good quan-
titative agreement with the theory.

Consider the schematic representation shown in Fig. 1.
We wish to be able to model both the slave and the master
laser explicitly. Alternatively we may wish to inject an em-
pirically determined intensity spectrum as the master. We
wish to be able to nominate spectra for the pump lasers,
allowing for pump noise or pump noise suppression. We also
wish to allow for detuning between the slave laser cavity
mode and the injected master. A rigorous solution to this
model can be obtained by using standard techniques@8# to
write down a master equation for the system. Such a master
equation would incorporate the quantum statistics of the
pumps through quantized pump modes@9,10# and the cou-
pling between master and slave laser via the cascaded system
formalism @11#. Then, using~for example! the positiveP
representation@12#, amplitude or phase spectra for the linear-
ized fluctuations can be calculated. Unfortunately the com-

plexity of such an approach leads only to numerical results.
An alternative approach is to derive operator equations of

motion for the lasers in which the various quantum-noise
sources appear as zero-point input fields. These equations
will be nonlinear. However, they can be solved by lineariza-
tion around their stable steady-state values@13#. The ampli-
tude or phase fluctuation spectrum of the output field can
then be calculated in terms of the input fields using the input-
output formalism@9#. This approach is similar to that em-
ployed for semiconductor lasers@14#. The advantages of this
approach are its conceptual simplicity and the production of
analytical solutions in terms of the various noise sources.
The simplicity of the approach means that many details omit-
ted from previous treatments, such as the full spectral noise
properties of the injected field and the pump sources, can be
included. In fact, once the linearized operator equations have
been written down the solution is basically just algebraic, so
quite complex systems can be solved. The separation of the
solution in terms of the various noise sources allows for a
greater physical understanding of the contributions of the
different processes to the final spectrum. We have compared
the results obtained using this method to numerical results
obtained using the positiveP representation~as outlined in
the preceding paragraph! and find them to be in excellent
agreement.

In Sec. II we derive the quantum-mechanical Langevin
operator equations of motion for a free-running laser. The
equations are written in a form suited to linearization around
the semiclassical solutions. In Sec. III the linearized equa-
tions for the quantum fluctuations are obtained and the am-
plitude and phase noise spectra are solved. The behavior of

FIG. 1. Schematic representation of the injection-locked laser
model.
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the solutions is discussed. In particular, the physical mecha-
nism for frequency-dependent squeezing in open~undepleted
pump level! lasers is explained. In Sec. IV the method is
generalized to the case of injection-locked lasers. The ampli-
tude noise spectrum is obtained and the solutions discussed.
In particular, we find that there are three distinct frequency
regimes with quite different noise properties. In Sec. V we
summarize our results.

II. OPERATOR EQUATIONS
FOR THE FREE-RUNNING LASER

We considerN four-level atoms~see Fig. 2! interacting
with two optical ring cavity modes. The first mode, repre-
sented by the annihilation and creation operatorsâ and â†,
respectively, is the lasing mode. It interacts with the active
atoms via the resonant Jaynes-Cummings Hamiltonian

Ĥ rev15 ihg~ â†ŝ232âŝ23
1 !, ~1!

where carets indicate operators,g is the dipole coupling
strength between the atoms and the cavity, andŝ i j and ŝ i j

1

are the collective Hermitian conjugate atomic lowering and
raising operators between thei th and j th levels. The field
phase factors have been absorbed into the definition of the
atomic operators. The second mode, represented by the an-
nihilation and creation operatorsb̂ and b̂†, respectively, is
the pump mode. It interacts with the active atoms via the
resonant Jaynes-Cummings Hamiltonian

Ĥ rev25 ihgp~ b̂
†ŝ142b̂ŝ14

1 !, ~2!

wheregp is the dipole coupling strength between the atoms
and the cavity.

We couple the atoms and cavities to reservoirs to describe
the irreversible transitions of the system. Under the Markov
approximation that the coupling constants between the sys-
tem and the reservoirs are frequency independent the Hamil-
tonian for the irreversible processes is

Ĥ irrev5 ihE
2`

`

dvH S 2km

2p D 1/2@Â~v!â†2Â†~v!â#

1S 2k l

2p D 1/2@Âl~v!â†2Âl
†~v!â#1S 2kb

2p D 1/2
3@B̂~v!b̂†2B̂†~v!b̂#1S g f

2p D 1/2
3@Ĉf~v!ŝ34

1 2Ĉf
†~v!ŝ34#

1S g t

2p D 1/2@Ĉt~v!ŝ23
1 2Ĉt

†~v!ŝ23#

1S g

2p D 1/2@Ĉ~v!ŝ12
1 2Ĉ†~v!ŝ12#1S gP

4p D 1/2
3@ĈP~v!2ĈP

† ~v!#~ ŝ32ŝ2!J . ~3!

Reservoir operators are indicated by capitals andŝ i is the
collective population operator for thei th level. Included in
our laser model are atomic spontaneous emission from level
u4& to level u3&, from level u3& to level u2&, and from levelu2&
to level u1&, at ratesgf , gt , andg, respectively. The rate of
collisional or lattice induced phase decay of the lasing coher-
ence isgP . The laser cavity damping rate due to the output
mirror is 2km . The laser cavity damping rate due to other
losses is 2kl . The total laser cavity damping rate is
2k52km12k l . The pump mode damping and pumping oc-
curs through an input-output mirror with a rate 2kb . In the
following the pump mode, upper-pump level, and pump co-
herence will all be adiabatically eliminated. Hence the details
of the pumping process dynamics are unimportant and are
kept as simple as possible.

Following standard procedure@8,9# we define the input
fields,

dÂ~ t !5
1

A2p
E dve2 iv~ t2t0!Â0~v!,

dÂl~ t !5
1

A2p
E dve2 iv~ t2t0!Âl0~v!,

B̂~ t !5
1

A2p
E dve2 iv~ t2t0!B̂0~v!,

dĈf~ t !5
1

A2p
E dve2 iv~ t2t0!Ĉf0~v!, ~4!

dĈt~ t !5
1

A2p
E dve2 iv~ t2t0!Ĉt0~v!,

dĈ~ t !5
1

A2p
E dve2 iv~ t2t0!Ĉ0~v!,

FIG. 2. Energy level scheme of the active atoms.
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dĈP~ t !5
1

A2p
E dve2 iv~ t2t0!ĈP0~v!,

where Â0 ,...,ĈP0 are the values ofÂ,...,ĈP at some arbi-
trary initial time t0. Zero-point fields are indicated byd’s. It
can be shown that the dynamics of any system operator (x̂)
is given by the quantum Langevin equation,

ẋ̂52 (
i51,2

1

h
@ x̂,H rev i #2 (

j51,...,7
H @ x̂,âj

†#S g j

2
â j1Ag j Â j D

2S g j

2
â j
†1Ag j Â j

†D @ x̂,âj #J , ~5!

where we have used the notation, for the system operators,

~ â1 ,â2 ,â3 ,â4 ,â5 ,â6 ,â7![~ â,â,b̂,ŝ34,ŝ23,ŝ12,ŝ32ŝ2!,

for the input fields,

~Â1 ,Â2 ,Â3 ,Â4 ,Â5 ,Â6 ,Â7!

[~dÂ,dÂl ,B̂,dĈf ,dĈt ,dĈ,dĈP!,

and for the coupling constants,

~g1 ,g2 ,g3 ,g4 ,g5 ,g6 ,g7![~2km,2k l ,2kb ,g f ,g t ,g,gP/2!.

Using Eq. ~5! we can write down the following operator
equations of motion for the laser:

ȧ̂5gŝ232kâ1A2kmdÂm1A2k ldÂl ,

ḃ̂5gpŝ142kbb̂1A2kbB̂,

ṡ̂145gp~ ŝ42ŝ1!b̂2
g f

2
ŝ142Ag f~ ŝ42ŝ1!dĈf ,

ṡ̂235g~ ŝ32ŝ2!â2
1

2
~2gP1g t1g!ŝ23

2A2gPŝ23~dĈP1dĈP
† !2Ag t~ ŝ32ŝ2!dĈt

2Ag~ŝ22ŝ1!dĈ,

ṡ̂15gp~ ŝ14b̂
†1ŝ14

1 b̂!1gŝ22Ag~ŝ12dĈ
†1ŝ12

1 dĈ!,

ṡ̂25g~ ŝ23â
†1ŝ23

1 â!1g tŝ32gŝ21Ag~ŝ12dĈ
†1ŝ12

1 dĈ!

2Ag t~ ŝ23dĈt
†1ŝ23

1 dĈt!,

ṡ̂352g~ ŝ23â
†1ŝ23

1 â!2g tŝ31g f ŝ4

2Ag f~ ŝ34dĈf
†1ŝ34

1 dĈf !1Ag t~ ŝ23dĈt
†1ŝ23

1 dĈt!,

ṡ̂452gp~ ŝ14b̂
†1ŝ14

1 b̂!2g f ŝ41Ag f~ ŝ34dĈf
†1ŝ34

1 dĈf !.
~6!

As they stand Eqs.~6! are intractable. However, by making
some approximations and using the operator relationships to
rewrite certain terms we will obtain equations which may be
solved using the standard linear approximation.

First we make the following assumptions.
~i! The pump cavity decays very rapidly~kb very large!.

This is consistent with the normal experimental situation in
which the pump mode is not resonant with the cavity.

~ii ! The upper-pump level decays very rapidly~gf very
large!. This is a desirable condition for efficient pumping and
is normally satisfied.

~iii ! Very little of the pump is absorbed by the active
atoms.

~iv! The phase decay of the laser coherence is very rapid
~gP very large!. This is a good assumption for most atomic
lasers.

Using these assumptions we can adiabatically eliminate

the equations forḃ̂, ṡ̂14, ṡ̂23, and ṡ̂4.
Secondly we use the operator relationshipsŝ i j ŝ i j

15ŝ i ,
ŝ i j

1ŝ i j5ŝ j , and ŝ i j ŝ i j5ŝ i j
1ŝ i j

150 to rewrite coherence
operators~that appear in the noise terms! in terms of popu-
lation operators. For example,

~ ŝ231ŝ23
1 !25~ ŝ31ŝ2!→~ ŝ231ŝ23

1 !5Aŝ31ŝ2.

This second step must be made to ensure that the linearized
equations feature the standard semiclassical invariance under
scaling by atomic number~see Sec. II!. We obtain the fol-
lowing simpler equations of motion:

ṅ̂5G̃~ ŝ32ŝ2!n̂22kn̂1A2km~ â†dÂm1âdÂm
† !

1A2k l~ â
†dÂl1âdÂl

†!2AG̃n̂~ ŝ31ŝ2!~dĈP1dĈP
† !,

ṡ̂152Qŝ1B̂
†B̂1gŝ22Ag~ŝ2dĈdĈ†1ŝ1dĈ

†dĈ!

2AQŝ1~12Qŝ1!B̂~dĈf
†1dĈf !,

~7!

ṡ̂25G̃~ ŝ32ŝ2!n̂1g tŝ32gŝ2

1Ag~ŝ2dĈdĈ†1ŝ1dĈ
†dĈ!

2Ag t~ ŝ3dĈtdĈt
†1ŝ2dĈt

†dĈt!2AG̃n̂~ ŝ31ŝ2!

3~dĈP1dĈP
† !,

ṡ̂352G̃~ ŝ32ŝ2!n̂2g tŝ31Qŝ1B̂
†B̂

1AQŝ1~12Qŝ1!B̂~dĈf
†1dĈf !

2Ag t~ ŝ3dĈtdĈt
†1ŝ2dĈt

†dĈt!1AG̃n̂~ ŝ31ŝ2!

3~dĈP1dĈP
† !,

where

G̃5
2g2

gp
,

Q5
8gp

2

g fkb
, ~8!

and the photon number operator is given byn̂5â†â.
The semiclassical equations of motion are obtained by

ignoring the zero-point fields~indicated byd’s!. In the next
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section we will linearize Eqs.~7! about the semiclassical
steady state and hence solve for the noise spectra.

III. SPECTRUM OF THE FREE-RUNNING LASER

A. Solving for the free-running spectrum

To solve for the full quantum mechanics we proceed by
assuming we can write the solutions in the scaled linear form

â~ t !

AN
5a1dâ~ t !,

ŝ i~ t !

N
5Ji1dŝ i~ t !,

B̂~ t !

AN
5B1dB̂~ t !,

~9!

wherea andJi are the stable semiclassical steady-state so-
lutions to Eq.~7! for the amplitude per root atom and popu-
lation of level i per atom, respectively.B is the coherent
amplitude per root atom of the pump mode. Without loss of
generality we can takea to be real. The quantum fluctua-
tions,dâ, dB̂, anddŝ i , are considered small perturbations to
the steady state. By substituting Eq.~9! into Eq. ~7! and
retaining only linear terms in the fluctuations we obtain the
following linearized equations of motion for the scaled quan-
tum fluctuations:

dX̂˙ a5G~dŝ32dŝ2!a1A2kmdX̂Am1A2k ldX̂Al

2AG~J31J2!dX̂cp ,

dṡ̂152Gdŝ11gdŝ22AGJ1dX̂B

2Ag~J2dĈ
˜dĈ˜†1J1dĈ

˜†dĈ˜ !,

dṡ̂25G~dŝ32dŝ2!a
21G~J32J2!adX̂a1g tdŝ32gdŝ2

1Ag~J2dĈ
˜dĈ˜†1J1dĈ

˜†dĈ˜ !

2Ag t~J3dĈ
˜
tdĈ
˜
t
†1J2dĈ

˜
t
†dĈ˜t!

2AG~J31J2!adX̂Cp ,

dṡ̂352G~dŝ32dŝ2!a
22G~J32J2!adX̂a2g tdŝ3

1Gdŝ11AGJ1dX̂B1Ag t~J3dĈ
˜
tdĈ
˜
t
†1J2dĈ

˜
t
†dĈ˜t!

1AG~J31J2!adX̂Cp , ~10!

where the quadrature amplitude fluctuations of the fields are
defined by

dX̂a5dâ1dâ†, dX̂Am5dÂ˜m1dÂ˜m
† ,...,

dX̂B5AGJ1h~dB̂1dB̂†!1AGJ1~12h!~dĈf1dĈf
†!.

The tildes on the input field operators indicate they have
been scaled by the root of the atomic number. The rateG is
proportional to the stimulated emission cross sectionss via

G5
2g2N

gp
5ssrc,

wherer is the atomic density andc is the speed of light in
the medium. We have defined the incoherent pump rate via
G5QuBu2N anddX̂B is the quadrature amplitude fluctuation
of the absorbed pump field where the fraction absorbed is
h!1. ~Note the requirement thath be small can be relaxed
provided there is little depletion of the atomic ground state.!
An important property of the semiclassical equations is their
invariance under scaling by atomic number~provided the
atomic density is constant!. Notice ~from the definitions of
the operators, the semiclassical values, and ofG! that Eqs.
~10! still display this invariance. This indicates that the noise
operators have been correctly rewritten~see Sec. II! in a
form compatible with the linearization assumption@Eq. ~9!#.

The boundary condition at the output mirror is@9#

Âout5A2kmâ2dÂm , ~11!

whereÂout is the laser output field. In terms of the amplitude
quadrature fluctuations

dX̂out5A2kmdX̂a2dX̂Am . ~12!

In frequency space Eq.~12! can be used to eliminate the
internal fields from Eq.~10! and hence obtain the following
expression for the output amplitude quadrature fluctuations
in terms of the input field fluctuations:

dXout5$@2km2 iv1F1~v!#dXAm1A2kmAGJ1F2~v!dXB

1A2kmF3~v!Ag~J2dC̃dC̃†1J1dC̃
†dC̃!

1A2kmF4~v!Ag t~J3dC̃tdC̃t
†1J2dC̃t

†dC̃t!

1A2kmAG~J31J2!@12F4~v!#dXCp

12Akmk ldXAl%/$ iv2F1~v!%, ~13!

where the absence of the circumflex indicates Fourier trans-
forms and the functionsFi~v! are defined in the Appendix.
Hence the amplitude noise spectrum of the output field,
Vout5^dXout,dXout&N, is given by

Vout~v!5$@2km2 iv1F1~v!#212kmGJ1@F2~v!#2Vp~v!

12kmgJ2@F3~v!#212kmg tJ3@F4~v!#2

12kmG~J31J2!

3@12F4~v!#214kmk l%/@ iv2F1~v!#2, ~14!

where square brackets indicate absolute squares,Vp is the
amplitude noise spectrum of the absorbed pump, and we
have used the fact that the fields associated with spontaneous
emission and phase decay noise are vacuum fields. The
physical origin of each of the noise terms in Eq.~14! is clear
by comparison with Eq.~13!.

We may also obtain the phase noise spectrum of the free-
running laser from Eq.~10! by solving for the phase quadra-
ture fluctuations;dX̂ a

25dâ2dâ†. The phase noise spectrum
is then given by

Vout
2 ~v!5$@2km2 iv#212kmGJ312kmGJ214kmk l%/v

2.
~15!
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B. Intensity-noise characteristics of the free-running laser

Equation ~14! is equivalent to an intensity-noise power
spectrum normalized to the quantum-noise limit. We illus-
trate the strength of our approach by showing that our result
unifies previous results in a physically transparent manner.
We consider first the limit in which the decay rate out of the
lower lasing level is the most rapid in the problem, i.e.,
g@g t ,G,k,Ga2. This is typical of gas and solid-state lasers
operating close to threshold~within approximately ten
times!. In this limit we get the following expression for the
spectrum:

Vout~v!511$~2km!2@v21~Ga21g t1G!2#

28kmkGa2~Ga21g t1G!

12kmG
2a2@GJ1Vp~v!1g tJ3#12kmG

3@~g t1G!21v2#~J31J2!14kmk l

3@~Ga21g t1G!21v2#%/$~v r
22v2!2

1v2~gL!2%, ~16!

where

v r5A2Ga2k ~17!

and

gL5Ga21g t1G.

There is a resonance in the spectrum at frequencyvr . If the
resonance is underdamped (v r.gL) an oscillation is pro-
duced known as the resonant relaxation oscillation@15#
~RRO!. Below this frequency the pump noise and the quan-
tum noise due to spontaneous emission and phase decay of
the coherence appear in the spectrum. Above the RRO these
noises roll off due to the filtering effect of the cavity. In the
limit of high frequencies the spectrum tends to 1, indicating
the laser is quantum-noise limited at high frequencies. Figure
3 illustrates these features for parameters typical of solid-
state lasers. Comparison of Eq.~16! with experimental spec-
tra from miniature Nd:YAG ring lasers produces excellent

quantitative agreement@7#. Sufficiently far above threshold
the low frequency region is dominated by noise from the
pump source. If the pump spectrum is below the quantum-
noise level~Vp,1! this noise suppression can be transferred
to the laser spectrum producing squeezing@14#. This effect
has been observed in diode lasers with regularized pump
currents@16# and is also illustrated in Fig. 3. This is the only
nonclassical effect possible under the approximation of Eq.
~16!. The squeezing shown in Fig. 3 is limited by the inclu-
sion of intracavity losses. Also, because the laser is not far
above threshold, there is significant obscuring noise from the
RRO.

Nonclassical effects are optimized in the absence of losses
and far above threshold. Hence to study these effects we
abandon the approximation of Eq.~16! and adopt instead the
approximation that losses are negligible, i.e.,g t>k l>0 and
the stimulated emission rate is the most rapid in the problem,
i.e.,Ga2@G,k,g. In this limit Eq. ~14! becomes

Vout5
v2

v21~2k!2

1
~2k!2~v21g2!

@2k~g12G!22v2#21v2~4k1g12G!2
Vp

1
~2k!2@v21~2G!2#

@2k~g12G!22v2#21v2~4k1g12G!2
. ~18!

This equation unifies all the nonclassical effects previously
noted for this type of laser@14,17,18#. The only noise terms
still significant are those due to the vacuum field input at the
mirror ~first term!, noise from the pump source~second
term!, and spontaneous emission noise due to the decay from
the lower lasing level~third term!. Consider first the situation
in which the decay from the lower lasing level is much faster
than the cavity decay rate and the pump rate, i.e.,g@G,k.
Equation~18! reduces to

Vout5
v2

v21~2k!2
1

~2k!2

v21~2k!2
Vp . ~18a!

The contribution from the lower lasing level decay is neg-
ligible. If the pump is quantum-noise limited, i.e.,Vp51, the
first and second terms add up to 1, for all frequencies. This is
the standard result that lasers are quantum-noise limited well
above threshold and is the limiting result for Eq.~16!, well
above threshold. We see that the quantum noise arises from
the pump at low frequencies and the vacuum noise at high
frequencies@14#. As we observed for Eq.~16! if the pump is
squeezed then squeezing appears in the output spectrum at
low frequencies. In this case the roll off of squeezing with
frequency is a Lorentzian with a half-width of the cavity
decay rate. Consider next the situation in which both the
pump and lower lasing level decay rate are much faster than
the cavity decay rate, i.e.,g,G@k. Equation~18! reduces to

Vout5
v2

v21~2k!2
1

~2k!2g2

@~2k!21v2#~g12G!2
Vp

1
~2k!2~2G!2

@~2k!21v2#~g12G!2
. ~18b!

FIG. 3. Intensity-noise spectrum of the free-running laser@Eq.
~16!# with classical pump noise;Vp5100~upper trace! and nonclas-
sical pump noise suppression;Vp50.1 ~lower trace!. Other param-
eters are G51.531012 s21, G56.0 s21, gt54.63103 s21,
km58.03107 s21, andkl55.23107 s21. The QNL is at 0 dB. The
frequency scale is in logarithms to base 10.
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Now both the pump and lower lasing level decay noise con-
tribute to the output noise. In fact the division of the noise
between these two independent processes reduces the total
noise contributed@19#. This leads to 50% squeezing in the
output at low frequencies when the pump and decay rates are
‘‘matched’’ ~g52G!. Once again the roll off of squeezing
with frequency is Lorentzian.

The division of the low frequency noise between the
pump and the lower lasing level decay noise can also occur
in a frequency-dependent way, even if the pump rate is much
slower than the decay rate. Consider the situation in which
the cavity decay rate is faster than the lower level decay rate
but both are much faster than the pump rate, i.e.,k.g@G.
Now Eq. ~18! reduces to

Vout5
v2

v21~2k!2
1

~2k!2~v21g2!

~2kg22v2!21v2~4k1g!2
Vp

1
~2k!2@v21~2G!2#

~2kg22v2!21v2~4k1g!2
. ~18c!

Under this condition the laser can be considered an open
system, i.e., the ground level is an undepleted reservoir@as
for Eqs. ~16! and ~18a!#. The resonance in the denominator
of Eq. ~18c! at

vs5Akg ~19!

is now inside the cavity linewidth. At frequencies close to
the resonance, noise is divided between contributions from
the pump and the lower level decay rate in much the same
way as when the rates are matched. In the limit thatk@g,
50% squeezing is produced at frequencies close tovs . The
physical mechanism behind this effect is the storage of elec-
trons in the lasing levels for times long compared to the
cavity decay time. The subsequent noise filtering effect pro-
duces the noise suppression.

In this section we have shown how the three-level laser
equations can be solved for their fluctuation spectrum so as
to produce analytical solutions containing more detail in a
physically clear way than previous methods. In the next sec-
tion we generalize the approach to the problem of injection-
locked lasers.

IV. SPECTRUM OF THE INJECTION-LOCKED LASER

A. Solving for the injection-locked spectrum

We now consider the effect of an injected field. The las-
ing transition of theN atoms now interacts with two optical
ring cavity modes via the Jaynes-Cummings Hamiltonian

Ĥ5 ihg~ âi
†ŝ23i1âf

†ŝ23f2âi ŝ23i
1 2âf ŝ23f

1 !. ~20!

The modeâi is resonant with the input field from the master
but may be detuned from the slave laser cavity resonance.
The modeâf is the resonant free-running mode of the slave.
Each mode induces an independent dipole interaction with
the lasing levels modeled by lowering and raising operators
for each mode~also labeledi and f !. We have assumed that
for the range of frequencies considered the dipole coupling

strength for the two modes is the same. Following the pro-
cedure of Sec. II, the operator equations of motion can be
written

ȧ̂ f5
G

2
~ ŝ32ŝ2!âf2kâf

1A2kmdÂm1A2k ldÂl2AGâf ŝ23~dĈP f1dĈP f
† !,

ȧ̂i5
G

2
~ ŝ32ŝ2!âi2~k1 iD!âi1A2kmÂ1A2k ldÂl

2AGâi ŝ23~dĈPi1dĈPi
† !,

ṡ̂152Qŝ1B̂
†B̂1gŝ22Ag~ŝ2dĈdĈ†1ŝ1dĈ

†dĈ!

2AQŝ1~12Qŝ1!B̂~dĈf
†1dĈf !, ~21!

ṡ̂25G~ ŝ32ŝ2!~ n̂f1n̂i !1g tŝ32gŝ2

1Ag~ŝ2dĈdĈ†1ŝ1dĈ
†dĈ!

2Ag t~ ŝ3dĈtdĈt
†1ŝ2dĈt

†dĈt!2AGn̂f~ ŝ31ŝ2!

3~dĈP f1dĈP f
† !2AGn̂i~ ŝ31ŝ2!~dĈPi1dĈPi

† !,

ṡ̂352G~ ŝ32ŝ2!~ n̂f1n̂i !2g tŝ31Qŝ1B̂
†B̂

2Ag t~ ŝ3dĈtdĈt
†1ŝ2dĈt

†dĈt!

1AQŝ1~12Qŝ1!B̂~dĈf
†1dĈf !1AGn̂f~ ŝ31ŝ2!

3~dĈP f1dĈP f
† !1AGn̂i~ ŝ31ŝ2!~dĈPi1dĈPi

† !,

where the definitions are the same as in Sec. II A. The sub-
scriptsi and f are included when fields pertain to the injected
or free modes, respectively. The input field from the master
laser is labeledÂ. The detuning between the input field and
the slave cavity isD.

Once again the semiclassical equations of motion are ob-
tained by ignoring the zero-point fields. We assume that the
input field is real. Notice that this forces the locked mode to
be complex for all but zero detunings. An examination of the
behavior of the semiclassical steady state as a function of the
detuning between the input field and the cavity resonance
reveals the standard injection locking behavior@4#. At large
detunings there is very little buildup of the input field in the
laser cavity and hence negligible interaction with the active
atoms. The output of the laser is just the geometric addition
of the master and slave fields. As the detuning is reduced the
injected field intracavity intensity increases and starts to rob
gain from the free-running mode, which begins to drop in
intensity. Eventually, when the gain to loss balance of the
injected mode equals that of the free-running mode, the free-
running mode is extinguished. This occurs when

D l5
A2kmA

ua f u
. ~22!

The detuningDl is called the locking range andaf is the
semiclassical steady-state value of the free-running laser per
root atom in the absence of an injected field.A is the semi-
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classical amplitude of the injected field per root atom. Note
that the input fields are traveling wave fields thusuAu2 is the
photon flux of the master field in units of photons per atom
per second. For detunings less than the locking range the
free-running mode does not oscillate and the slave laser acts
as an optical amplifier for the injected field. Linearization

and spectral analysis of the fluctuations proceeds as in Sec.
III A. An additional complication, arising from the detuning
of the locked mode, is the coupling of the amplitude quadra-
ture of the output field with the phase quadrature of the in-
ternal and injected fields. The amplitude fluctuation spectrum
is given by

Vout~v!5H F 2km2 iv1F1~v!2
A2kmAR

ua i u
2

2kmAI
2

ua i u2S iv1
A2kmAR

ua i u
D G

2

Vin~v!

12kmGJ1@F2~v!#2Vp~v!12kmgJ2@F3~v!#212kmg tJ3@F4~v!#212kmG~J31J2!

3S @12F4~v!#21F A2kmAI

ua i uS iv1
A2kmAR

ua i u
D G

2D 1~2km!2F A2kmAI

ua i uS iv1
A2kmAR

ua i u
D G

2

Vin
2~v!

14kmk lS 11U A2kmAI

ua i uS iv1
A2kmAR

ua i u
DU

2D J Y F iv2F1~v!1
A2kmAR

ua i u
1

2kmAI
2

ua i u2S iv1
A2kmAR

ua i u
D G

2

,

~23!

where the definitions are as for Eq.~14! ~see also the Appen-
dix! with the substitutiona→uai u. The amplitude fluctuation
spectrum of the injected master is denotedVin while the
phase fluctuation spectrum of the injected master is denoted
V in

2 . Also we have used

AI5
Dua i u

A2km

and

AR5AA22AI
2.

The master can be modeled explicitly by using Eqs.~14! and
~15! as the input amplitude and phase spectra, respectively.
Alternatively idealized or empirically determined spectra can
be used.

B. Intensity-noise behavior of the injection-locked laser

We will now examine the properties of Eq.~23!. First we
consider the limit of the lower lasing level decay rate being
very rapid @as for Eq.~16!#. We limit our discussion, ini-
tially, to the case in which the injected field is resonant with
the slave cavity. We get the expression

Vout5Vin1HVin~2km!2@v21~Ga i
21g t1G!2#

2Vin4kmSG2a i
2~J32J2!1

A2kmAi

a i
~Ga i

21g t1G! D

3~Ga i
21g t1G!2Vin4kmv2

A2kmAi

a i

12kmG
2a i

2~GJ1Vp1g tJ3!12kmG@~g t1G!21v2#

3~J31J2!14kmk l

3@~Ga i
21g t1G!21v2#J Y $~v rl

2 2v2!21v2gLl
2 %,

~24!

where

v rl5SG2a i
2~J32J2!1

A2kmAi

a i
~Ga i

21g t1G! D 1/2
and

gLl5Ga i
21g t1G1

A2kmAi

a i
.

Note thatai is real for zero detunings. We can identify three
distinct frequency regimes in Eq.~24!. For simplicity we
assume that the locking range and cold cavity linewidth are
much larger than the stimulated emission rate, pump rate,
and spontaneous emission rate, i.e.,

D l'k@Ga i
2,G,g t . ~25!

This is a good approximation for most solid-state lasers.
(i) Amplification regime.The resonance that appeared in

the free-running case@see Eq.~16!# is still present in the
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denominator for the locked case at roughly the same fre-
quency, i.e.,v rl'v r . However, the damping term is now
much larger due to the presence of the injected field. In fact
the damping term is now roughly equivalent to the locking
range, i.e.,gLl'D l . For sufficiently large values of the in-
jected field such thatgLl.v rl ~or roughly such that the lock-
ing range is larger than the free-running RRO frequency! the
resonance is overdamped and does not produce an oscilla-
tion. Instead in the frequency region close to the resonance
the injected fluctuations are amplified. If we simplify the
spectrum@Eq. ~24!# using Eq.~25! and assume that we are
close to the resonance, i.e.,

v'v rl , ~26!

we obtain

Vout5VinS 11
2kma i

2

A2 2
2A2kma i

A D 1
G~J31J2!a i

2

A2

5VinH1~H21!1
4k la i

2

A2 , ~27!

where H5(2kma i2A)2/A2 is the semiclassical intensity
amplification factor@see Eq.~11!#. In deriving Eq.~27! we
have also used the fact that in the presence of rapid decay
from the lower lasing level,J3@J2 , to simplify the second
term. In the limit of negligible losses~kl50!, Eq. ~27! re-
duces to the standard result for an ideal linear optical ampli-
fier @20#. The injected fluctuations are amplified by the semi-
classical amplification factor@2# ~first term!. In addition
quantum fluctuations introduced by the phase decay of the
lasing coherence@14# ~second term! and the intracavity
losses~third term! are also amplified. Note that other noise
features of the free-running slave, such as pump noise, are
suppressed. The width of the amplification regime depends
on how strongly the resonance is damped and hence is in-
versely related to the locking range.

(ii) High frequency regime.If we move to frequencies
much higher than the resonance the amplification rolls off
until at frequencies

v@SVinkm
2 14kkm

Vin
D 1/2 ~28!

we find

Vout>Vin . ~29!

Physically we are outside the laser cavity linewidth, hence
high frequency fluctuations inside the cavity are suppressed
while high frequency fluctuations on the injected field are
simply reflected off the front mirror.

(iii) Low frequency regime.If we move to frequencies
lower than the resonance we also get a roll off of the ampli-
fication of the fluctuations of the injected field. The corner
frequency for this roll off is given by

vc5
v rl
2

gLl
~30!

~or roughly the square of the free-running RRO frequency
divided by the locking range!. In addition noise sources as-
sociated with the free-running dynamics of the slave laser
roll on. If we add the extra condition that we are well above
threshold (Ga l

2@G@g t) and consider frequencies very
close to dc~v'0! then Eq.~24! becomes

Vout>
VinA

21VpGJ1

~A2kma i2A!2

>
PinVin1PfreeVf

Pin1Pfree
, ~31!

where we have used the fact that far above threshold, with
small losses (km@k l), energy conservation demands
GJ1>2kma2}Pfree, wherePfree is the free-running output
power for the same pump rate, and also (A2kma i2A)2

}Pout>Pin1Pfree. Under these same assumptions the spec-
trum of the free-running slave@Eq. ~14!# is just determined
by the pump noise, i.e.,Vf5Vp ~see Sec. III B!. Hence at
low frequencies the output spectrum is just the independent
addition of the fluctuations of the injected and free-running
modes and is analogous to the spectrum when the lasers are
not locked.

Given the preceding discussion we may ask what the nor-
malized spectrum of a large, noisy laser locked to a small
quieter laser would be. In Fig. 4 we show the spectrum of a
slave laser~whose free-running spectrum is the same as for
Fig. 3, with classical pump noise!, locked to a quantum-noise
limited master, a master with white noise 10 dB above the
quantum-noise limit, and a master with squeezed white noise
10 dB below the quantum-noise limit. The intensity amplifi-
cation factor between the master and the locked slave is;40
times. At low frequencies the slave pump noise dominates
@Eq. ~31!#. The noise due to the master rolls on with increas-
ing frequency until we reach the amplification regime where
the noise of the master is amplified by the intensity amplifi-
cation factor plus a quantum-noise penalty@Eq. ~27!#. Fi-
nally, at frequencies well above the cavity linewidth, we see
just the quantum noise of the master@Eq. ~29!#. We compare
the predictions of Eq.~24! with results obtained using min-
iature Nd:YAG ring lasers in Ref.@7# and find good quanti-
tative agreement.

FIG. 4. Intensity-noise spectrum of the injection-locked laser for
zero detuning@Eq. ~24!# with classical pump noise;Vp5100. The
master spectrum isVin510 ~upper trace!, Vin51 ~middle trace!, and
Vin50.1 ~lower trace!. The injected field flux isA250.07 s21. Other
parameters are the same as in Fig. 3.
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C. Nonclassical effects

We now consider applications of the injection-locked la-
ser for production and manipulation of squeezed light. In the
amplification regime the amplified dipole fluctuations@sec-
ond term in Eq.~27!# mask nonclassical effects for amplifi-
cation factors of 2 or more. However, in the low and high
frequency regimes nonclassical effects can be preserved.

(i) High frequency regime. According to Eq.~29! in the
high frequency regime the output spectrum of the injection-
locked laser is identical to that of the master. If the input
light from the master is squeezed then the output from the
slave will also be squeezed. Thus the intensity of a bright
squeezed light source can be increased without destroying
the squeezing@21#. This is illustrated by the spectrum for the
squeezed master in Fig. 4. Notice that the signal resolution of
the master~the separation between traces for different master
noise levels! is reduced in the amplification regime but is

preserved in the high frequency regime.
(ii) Low frequency regime. If the slave laser is well above

threshold Eq.~31! tells us that at low frequencies the slave
laser spectrum is an independent combination of fluctuations
from the master laser and from the slave laser pump. If the
master field is small compared to the output of the cavity
(Ai!A2kma i) the pump fluctuations will dominate. There-
fore for a laser with a regularized pump~see Sec. III B!
squeezing will still be seen with a small injected signal. In
diode lasers pumped with a regularized current the presence
of weakly lasing longitudinal side modes can degrade the
squeezing produced. An injected field will suppress these
side modes. In this way injection locking has been used to
improve the squeezing obtained from semiconductor lasers
@1#. In fact if we consider the situation in which the stimu-
lated emission rate is very rapid and losses are negligible@as
for Eq. ~18!# we find

Vout5

v21
2kA2

a i
2

v21S 2k2
A2kA

a i
D 2 Vin1

~2k!S 2k2
2A2kA

a i
D ~v21g2!

F S 2k2
A2kA

a i
D ~g12G!22v2G 21v2F2S 2k2

A2kA

a i
D 1g12GG 2 Vp

1

~2k!S 2k2
2A2kA

a i
D @v21~2G!2#

F S 2k2
A2kA

a i
D ~g12G!22v2G 21v2F2S 2k2

A2kA

a i
D 1g12GG 2 . ~32!

Provided the master field is small compared to the output of
the cavity and the slave spectrum is quantum-noise limited
then the output spectrum is virtually unchanged from that of
the free-running case for all frequencies, hence all squeezing
mechanisms are unaffected. Note that in the limit of being
very far above threshold there is no amplification regime.

Increased squeezing can also be produced through a
single mode effect@6#. If the slave laser is not far enough
above threshold~Ga i

2>G! then squeezing from regularized
pumping is reduced by the presence of dipole fluctuations
and the RRO. Notice, however, that if the injected field is
increased then the internal mode amplitude~ai! will also
increase such that for a sufficient injected fieldGa i

2@G can
be satisfied and the dipole fluctuations and RRO are sup-
pressed. On the other hand, as the injected field gets larger it
contributes more of its own fluctuations to the spectrum via
Eq. ~31!. Nevertheless, if a quantum-noise limited master is
used, squeezing from all three mechanisms discussed in Sec.
III B can be produced at lower slave pump powers using
injection locking. At pump powers at which squeezing is
already optimized in the free-running case, injection locking
can only reduce the amount of squeezing in a single mode
situation by adding its own noise. The effect is illustrated in
Fig. 5 by comparing the low frequency squeezing of the
free-running laser~same parameters as Fig. 3, with pump

noise suppression! with that of the locked laser. As noted in
Sec. III B, the free-running laser is too close to threshold to
show good squeezing. The injection of a large signal from a
quantum-noise limited master significantly improves the fre-
quency range of the squeezing.

D. The effect of detuning

From Eq.~23! we find that a detuning between the input
field and the slave laser cavity affects the output spectrum in
three distinct ways. First the detuning introduces a
frequency-dependent rotation of the noise quadrature of the
master field which is amplified. Hence phase noise from the
master appears in the output intensity spectrum of the slave.
The rotation of the noise quadrature is most pronounced at
lower frequencies and high detunings.

Secondly the additional terms in the denominator change
the position of the corner frequency@Eq. ~30!# marking the
roll off of pump noise and the beginning of the amplification
regime. The effect is to increase the damping term in the
denominator and hence reduce the corner frequency leading
to a lower frequency roll off of pump noise and a wider
amplification regime. The combination of this effect with the
rotation of the noise quadrature means that for detunings
close to the edge of the locking range the amplification re-
gime extends to low frequencies where almost pure phase
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noise from the master is amplified.
Thirdly, a second resonance appears in the denominator at

approximately the detuning frequency once the detuning be-
comes larger than roughly half the locking range. This leads
to an enhancement of all noise sources at frequencies close to
the detuning frequency. The origin of this noise source is
beating between transient photons at the free-running fre-
quency and the strong photon field at the injected frequency.

We illustrate the various effects of detuning in Fig. 6.
Figure 6~a! shows the effect of a moderate detuning. The
dashed line is for a master with equally noisy amplitude and
phase quadratures, while the solid line is for a master with
amplitude noise but quantum-noise limited phase noise. The
gap between these curves is a measure of the rotation of the
amplified quadrature of the master. For comparison the zero
detuning case is included~gray trace!. Some quadrature ro-
tation and broadening of the amplification regime can be
observed. Figure 6~b! is for a detuning close to the edge of
the locking range. Now strong quadrature rotation and broad-
ening of the amplification regime can be observed. In addi-
tion the resonance at the detuning frequency is seen.

Although we will not elaborate here it is possible to ex-
tend the theory so as to examine the noise spectra of the two
independent modes outside the locking range. The spectra
move smoothly from the locked to unlocked case. The am-
plification of the injected mode noise drops with the ampli-
fication of its intensity as the detuning is made larger. While
the beat note grows rapidly as a steady state, free-running
intensity is established in the cavity. The spectrum of the
free-running mode behaves in an analogous way to a laser
being pumped further and further above threshold as the in-
creasing detuning increases the gain available. Hence, for
example, the RRO frequency will increase with the square
root of the free-running intensity as per Eq.~17!. At suffi-
ciently high detunings the two spectra become completely
independent.

V. CONCLUSION

We have shown that the linear input-output method can
be used to solve for the quantum fluctuations of an atomic
laser. The method is straightforward in its solution and leads
to analytical results for the full spectral properties of the

output field. The separation of the solution into the various
noise contributions allows greater physical insight into the
noise processes and also allows for the inclusion of the full
spectral properties of the pump field and any other input
fields.

We have demonstrated the approach by solving for the
amplitude quadrature spectrum of a four-level laser and de-
scribing its classical and nonclassical behavior. In particular,
we have shown that the physical mechanism for nonzero
frequency squeezing in open lasers is a noise filtering effect
due to the storage of atoms in the lasing levels. At nonzero
frequencies this distributes the noise between the pump and
the lower lasing level decay in much the same way as in a
rate matched laser.

We have applied the method to injection-locked lasers
and derived solutions with more detail than those previously
presented. We have investigated the behavior of the solutions
and identified three distinct frequency regimes in the noise
spectrum. At low frequencies the intensity fluctuations are
just the geometric addition of the fluctuations from the mas-
ter ~scaled by the master intensity! and the slave~scaled by
the slave intensity!. This is almost the same as the situation
when the master has a large detuning from the slave cavity
resonance~much larger than the locking range!. At middle
frequencies the master fluctuations are amplified in the same
way as by a linear optical amplifier. Slave noise sources are
suppressed. At high frequencies the output is just the master
fluctuations scaled by the slave intensity. We show that the
boundaries of these regimes are determined by the amplifi-
cation ratio between the master and the slave, the output

FIG. 5. Intensity-noise spectrum of the free-running laser@upper
trace, Eq.~16!# and the injection-locked laser@lower trace, Eq.~24!#
with nonclassical pump noise suppression;Vp50.1. The master la-
ser is quantum-noise limited;Vin51. The injected field flux is
A250.42 s21. Other parameters are the same as in Fig. 3.

FIG. 6. Intensity-noise spectra of the injection-locked laser with
detuningD51.8 MHz ~a! andD53.4 MHz ~b!. The master noise is
Vin510 andV in

2510 ~dashed trace and gray trace! or V in
251 ~solid

trace!. The gray traces show zero detuning. All other parameters are
the same as in Fig. 4.
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intensity of the free-running slave, and the detuning between
the master and the slave.

We have noted qualitatively the relationship between our
results and those of experiments. The apparent discrepancy
between Refs.@1# and@2# is shown to be because the results
of Ref. @1# were obtained in the low frequency regime while
those of Ref.@2# were obtained in the amplification regime.
In Ref. @7# we make a quantitative comparison between
theory and experiment.
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APPENDIX

This appendix contains the definitions of the functions
that appear in Eqs.~13!, ~14!, and~24!.

F1~v!5
G2a2~J32J2!~2iv12G1g!

~ iv1G!~ iv1g12Ga21g t!1g~Ga21g t!
,

F2~v!5
Ga~ iv1g2g t!

~ iv1G!~ iv1g12Ga21g t!1g~Ga21g t!
,

~A1!

F3~v!5
Ga~ iv12G1g t!

~ iv1G!~ iv1g12Ga21g t!1g~Ga21g t!
, ,

F4~v!5
Ga~2iv12G1g!

~ iv1G!~ iv1g12Ga21g t!1g~Ga21g2!
.
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