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Intensity noise of injection-locked lasers:
Quantum theory using a linearized input-output method

Timothy C. Ralph, Charles C. Harb, and Hans-A. Bachor
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(Received 18 October 1995

We derive analytical expressions for the quantum-noise spectra of an atomic laser using a linearized input-
output method. We generalize the method to the problem of injection-locked lasers. We identify three distinct
spectral noise regimes in the solution, unifying previous results. The approach offers insights into the physical
processes and is especially suited for comparison with experiment. The quantum spectral noise properties of
the pump laser and the injected laser appear explicitly in the sold&i250-29476)03710-9

PACS numbeps): 42.50—-p

I. INTRODUCTION plexity of such an approach leads only to numerical results.
An alternative approach is to derive operator equations of
The search for ever quieter light sources for applicationgnotion for the lasers in which the various quantum-noise

in communications and high precision interferometry has fusources appear as zero-point input fields. These equations
eled experimental interest in the noise properties ofvill be nonlinear. However, they can be solved by lineariza-

injection-locked lasergl,2]. In Ref.[1] it was shown that the  tion around their stable steady-state val{3]. The ampli-

injection of a small signal into a pump noise suppressedude or phase fluctuation spectrum of the output field can
semiconductor laser could suppress small longitudinal sidhen be calculated in terms of the input fields using the input-

modes while leaving the nonclassical noise characteristics gitPut formalism[9]. This approach is similar to that em-
the free-running laser unaffected. In contrast R2f.found  Ployed for semiconductor lasef54]. The advantages of this

that in Nd:YAG (YAG denotes yttrium aluminum garnet approgch aré it; con.ceptual simplicity ar_1d the production of
lasers the free-running noise characteristics were suppress& Zlitiﬁ%l";?;ugfot?; g‘p;?g:sh ?Letgﬁs\;ﬁg?;sa:;lj;;gugﬁi
;n(:];fre output noise was an amplified version of the injecte ed from previous treatments, such as the full spectral noise

gAltr.lough classical noise theories of injection locking properties of the injected field and the pump sources, can be

X X included. In fact, once the linearized operator equations have
have been around for some tinig], quantum-mechanical peen written down the solution is basically just algebraic, so
theories are more receft—6]. A quantum theory is needed g, jite complex systems can be solved. The separation of the

when noise powers approach or go below the standargo|ytion in terms of the various noise sources allows for a
quantum-noise limitQNL). In order to understand, moti- greater physical understanding of the contributions of the
vate, and model experimental research into injection lockingiifferent processes to the final spectrum. We have compared
a fully quantum-mechanical theory which incorporates thethe results obtained using this method to numerical results
spectral noise properties and detunings of the various inpubtained using the positive representatiorfas outlined in
fields and unifies the apparently dissimilar results of Refsthe preceding paragrapland find them to be in excellent
[1] and [2] is required. In this paper we present such aagreement.

theory. In a following papef7] we obtain experimental re- In Sec. Il we derive the quantum-mechanical Langevin
sults from miniature Nd:YAG lasers which are in good quan-operator equations of motion for a free-running laser. The
titative agreement with the theory. equations are written in a form suited to linearization around

Consider the schematic representation shown in Fig. lthe semiclassical solutions. In Sec. Il the linearized equa-
We wish to be able to model both the slave and the mastdions for the quantum fluctuations are obtained and the am-
laser explicitly. Alternatively we may wish to inject an em- plitude and phase noise spectra are solved. The behavior of
pirically determined intensity spectrum as the master. We
wish to be able to nominate spectra for the pump lasers,
allowing for pump noise or pump noise suppression. We also
wish to allow for detuning between the slave laser cavity
mode and the injected master. A rigorous solution to this
model can be obtained by using standard technid8gso
write down a master equation for the system. Such a master
equation would incorporate the quantum statistics of the

i pump i pump

pumps through quantized pump mod@s10] and the cou- injection
. . locked
pling between master and slave laser via the cascaded system output

formalism [11]. Then, using(for examplg the positive P
representatiofil2], amplitude or phase spectra for the linear-  FIG. 1. Schematic representation of the injection-locked laser
ized fluctuations can be calculated. Unfortunately the commodel.
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FIG. 2. Energy level scheme of the active atoms.

the solutions is discussed. In particular, the physical mecha-
nism for frequency-dependent squeezing in ofwerdepleted
pump level lasers is explained. In Sec. IV the method is
generalized to the case of injection-locked lasers. The ampli-
tude noise spectrum is obtained and the solutions discussed.
In particular, we find that there are three distinct frequency
regimes with quite different noise properties. In Sec. V we
summarize our results.
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Reservoir operators are indicated by capitals ands the
collective population operator for thi¢h level. Included in

our laser model are atomic spontaneous emission from level
|4) to level |3), from level|3) to level |2), and from level2)

I. OPERATOR EQUATIONS
FOR THE FREE-RUNNING LASER

to level|1), at ratesy;, v, andy, respectively. The rate of
collisional or lattice induced phase decay of the lasing coher-

ence isyp . The laser cavity damping rate due to the output

We consideN four-level atoms(see Fig. 2 interacting

mirror is 2«,,. The laser cavity damping rate due to other

with two optical ring cavity modes. The first mode, repre-losses is 2,. The total laser cavity damping rate is

sented by the annihilation and creation operafomnda’,

2k=2kK,t 2k, . The pump mode damping and pumping oc-

respectively, is the lasing mode. It interacts with the activecurs through an input-output mirror with a rate2 In the

atoms via the resonant Jaynes-Cummings Hamiltonian

following the pump mode, upper-pump level, and pump co-

Hreva=1h g(éta’23_ éa—;?.s) )

herence will all be adiabatically eliminated. Hence the details
of the pumping process dynamics are unimportant and are
kept as simple as possible.

Following standard procedure,9] we define the input
fields,

where carets indicate operators,is the dipole coupling
strength between the atoms and the cavity, apdand o

are the collective Hermitian conjugate atomic lowering and
raising operators between thth and jth levels. The field
phase factors have been absorbed into the definition of the
atomic operators. The second mode, represented by the an-
nihilation and creation operatots and b', respectively, is

the pump mode. It interacts with the active atoms via the
resonant Jaynes-Cummings Hamiltonian

Hievz=ihgy(bTo1,— b7y, 2

whereg, is the dipole coupling strength between the atoms
and the cavity.

We couple the atoms and cavities to reservoirs to describe
the irreversible transitions of the system. Under the Markov
approximation that the coupling constants between the sys-
tem and the reservoirs are frequency independent the Hamil-
tonian for the irreversible processes is

SA(t) = dwe 1A (w),

&
5A|(t)=\/% f dwe ?tA (),
é(t)=\/% J dwe ®(t~10B (),
5éf(t):¢% f dwe (t10C, (w), (4
6ét(t):\/% f dwe @t C (o),

~ 1 ) ~
5C(t)=\/? f dwe ?t"Cy(w),
T
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R 1 R First we make the following assumptions.

6Cp(t)= — f dwe @t)Cphy(w), (i) The pump cavity decays very rapidiy, very large.
J2m This is consistent with the normal experimental situation in

which the pump mode is not resonant with the cavity.

(i) The upper-pump level decays very rapidly; very
large. This is a desirable condition for efficient pumping and
is normally satisfied.

(iii) Very little of the pump is absorbed by the active

whereA,,...,Cpg are the values oA,...,Cp at some arbi-
trary initial timety. Zero-point fields are indicated hys. It
can be shown that the dynamics of any system operador (
is given by the quantum Langevin equation,

atoms.
X=— 2 } [X,Hevil— 2 ([x aT] —’ \/— ) (iv) The phase decay of the laser coherence is very rapid
=12 h =L 2 (yp very large. This is a good assumption for most atomic
lasers.
- = a +\/— [X, aJ ] (5) Using these assumpuons we can adiabatically eliminate
the equations fob 014, O3, anda4
where we have used the notation, for the system operators, Secondly we use the operator relationshipso j = o ,
S o (rja” oj, and oyj0;; =0 o;; =0 to rewrite coherence
(a;,a5,a3,a4,85,8¢5,a7)=(a,a2,b,034,093,012,03—077), operatorgthat appear in the noise terjna terms of popu-

lation operators. For example,
(0253t 029)°= (T3 G2) = (05t Gz9) = o3+ 0.

R S This second step must be made to ensure that the linearized
=(0A, 0 ,B,8Cy,6C,,5C, 5Cp), equations feature the standard semiclassical invariance under
and for the coupling constants scaling by atomic numbefsee Sec. )| We obtain the fol-

' lowing simpler equations of motion:

for the input fields,

(Al 1A2 1A3 !A4 1A5 !AG 1A7)

(Y1,72,¥3: Y4, Y5, Y6, Y1) =(2Km,2K1, 2K, Y1, Y2, Vs YPr2) - .
) ) ) n= G(a3 0o)N—2kN+ \2Kkp(aT 5A +asA! m)
Using Eg. (5) we can write down the following operator

equations of motion for the laser: + 2k (2T 6A +a5A) — VG (G54 6p) (8Cp+ SCL),
a=gogs~ kAT V2KmdAn+ V2 A, 1= —05,BB+yo,— \y(0,0CC T +5,6C 1 5C)
6:gp(}14_Kb6+\/2Kbé, —\/®<}1(1—®(}1)I§(56I+5éf),
y o )
5'14=gp((}4—6'1)b fa'14 \/—(0'4 0'1)5Cf, (TZ:G(O'3_O'2)H+’}/tO'3_’)/O'2
+Vy(5,6CSCT+6,5CT5C)
. S | .
0'23:9(03_0'2)3_5 (2yp+nty)oas —Vn(638C8C! + 6,6C! 5C) — VGRA(3+0y)
—\2yp2o 5Cp+ 8CE) — (53— 575) 5C, X (8Cp+5CP),
_\/;(6'2_&1)5(:’ 8'3=—a(&a—&z)ﬁ—yt&3+®&léTé
?legp(&ME)T"' &ﬂf))-i— Yo~ \/;(&12561"‘&&5&)’ + V®&l(1_®&l)é(6é;r+5éf)
. o ) R  me A _ ~ S Y
T2=9(02R"+ G38) + 103~ Y0+ V(6125CT+ 71,6C) \/%(Usﬁctact *020Ci0C) \/Gn(03+ 72)
R ~ R ~ ~ ~t
—Vn(6230C{ + 5355C)), X (8Cp+ oCp),
% A At Ata - - where
03= —0(0238 +0,) ~ 03t Y10y
SN A At g n ~ 2¢°
—71(5340CT+ 55,6C ) + 7 6236CT + 555C), G- yi
(}4:—gp((}14bT+&f4b)—7f(}4+\/;(&345c;r+&§45cf)- 8g2
(6) 0=—2", )
YiKp

As they stand Eqg6) are intractable. However, by making

some approximations and using the operator relationships @nd the photon number operator is givenibya'a.

rewrite certain terms we will obtain equations which may be The semiclassical equations of motion are obtained by
solved using the standard linear approximation. ignoring the zero-point fieldéndicated by§'s). In the next
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section we will linearize Eqs(7) about the semiclassical wherep is the atomic density and is the speed of light in

steady state and hence solve for the noise spectra. the medium. We have defined the incoherent pump rate via
I'=0|B|?N and X is the quadrature amplitude fluctuation
Il. SPECTRUM OF THE FREE-RUNNING LASER of the absorbed pump field where the fraction absorbed is

7<1. (Note the requirement that be small can be relaxed
provided there is little depletion of the atomic ground sjate.
To solve for the full quantum mechanics we proceed byAn important property of the semiclassical equations is their
assuming we can write the solutions in the scaled linear forninvariance under scaling by atomic numb@rovided the
R atomic density is constantNotice (from the definitions of
a(t) A ai(t) . B(t) - the operators, the semiclassical values, an&pthat Egs.
N =atdat), —g—=Jditdoi(t), N =B+6B(t),  (10) still display this invariance. This indicates that the noise
) operators have been correctly rewrittésee Sec. )l in a
form compatible with the linearization assumptiidfq. (9)].
wherea andJ; are the stable semiclassical steady-state so- The boundary condition at the output mirror{ &
lutions to Eq.(7) for the amplitude per root atom and popu- - .
lation of leveli per atom, respectivelyB is the coherent Aout= V2Kkma— 6An, (13)
amplitude per root atom of the pump mode. Without loss of -
genera"ty we can take to be real. The guantum fluctua- Whererut is the laser output field. In terms of the amplitude
tions, 5a, B, andda;, are considered small perturbations to quadrature fluctuations
the steady state. By substituting E@) into Eq. (7) and . . -
retaining only linear terms in the fluctuations we obtain the OXour= V2Km6Xa— 0Xam- (12
following linearized equations of motion for the scaled quan-
tum fluctuations: In frequency space Ed12) can be used to eliminate the
internal fields from Eq(10) and hence obtain the following

5;( = G( 86— 85) a+ N2 k6K m et N2 11 SX expression for the output amplitude quadrature fluctuations
2= G(073 UZ)aA KmO2Am KIO7A in terms of the input field fluctuations:
- \/G(J3+J2)5ch,

86,=—T 861+ y80,— T I, 6Xg

A. Solving for the free-running spectrum

5X0ut:{[2Km_ | W+ Fl(“))]‘SXAm_" \/2Km\ FJng(a))5XB
+2kyF3( @)V y(J,6CSCT+3,56CT5C)

—~ \/y(JzaéﬁéHJlaéTaé), +\2kF 4(0) N 71(336C,8C +3,8CT 5C))
56=G(86r3— 80p) a2+ G(Jg— Jp) a 8K+ 1,505 503 +V2kmVG(Ja+J2)[1-Fa(@)]0Xcyp
+2Vkmk X {io—F1(w)}, (13

+ \/y(J25656T+J156T5€:)
where the absence of the circumflex indicates Fourier trans-

_ \/%(335Et5a+325a’r5a) forms and the function&;(w) are defined in the Appendix.
A Hence the amplitude noise spectrum of the output field,
—\G(I3+3y) adXcy, Vou= (X out, X oudN, is given by
. ~ _ H 2 2
863=— G (83— 867y) a?— G(Iz—Jo) adX 5 — 7,005 Voul @) ={[2km—io+F1(0)]°+ 2kp' I3[ Fo( @) V(@)
+2Kmydo[F3(@)1?+2kmyJ3[Fa(®)]?

" ~ = Xt =+ =
+I'601+I'J16Xg+ \/yt(JgéCt&Ct +J,6C; 6Cy) 2k, G(J+ )
TVGHs+ Jp)adXey, (19 X[1-Fy(0)P+dkpe)[io—Fy(@)?, (14

here the quadrature amplitude fluctuations of the fields are - .

:ljvefined byqu u P vetuat I where square brackets indicate absolute squafgss the
amplitude noise spectrum of the absorbed pump, and we
have used the fact that the fields associated with spontaneous
emission and phase decay noise are vacuum fields. The
- - - - - physical origin of each of the noise terms in Ety) is clear
SXg=\TJ 7(8B+ 6B +\TJy(1— 5)(5C+ 5C)). by comparison with Eq(13).

We may also obtain the phase noise spectrum of the free-

The tildes on the input field operators indicate they hav§ynning laser from Eq(10) by solving for the phase quadra-
been scaled by the root of the atomic number. The @te  tyre fluctuationspX ; = sa— sa’. The phase noise spectrum

proportional to the stimulated emission cross sectigNia s then given by

Xa=0ba+06a", Xpam=6SAnt+ oAl ...,

2
= 29N =o.0C Vo 0) ={[2km— i 017+ 2k G Ig+ 260G I+ bk i H w?.
o T (15)

G
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guantitative agreemeii7]. Sufficiently far above threshold
0 the low frequency region is dominated by noise from the
0 pump source. If the pump spectrum is below the quantum-
ot . noise level(V,<1) this noise suppression can be transferred
(dB) to the laser spectrum producing squeeZihg]. This effect
has been observed in diode lasers with regularized pump
20 currentg 16] and is also illustrated in Fig. 3. This is the only
nonclassical effect possible under the approximation of Eg.
(16). The squeezing shown in Fig. 3 is limited by the inclu-
=T -20 -10 10 20 sion of intracavity losses. Also, because the laser is not far
10 Log [Frequency (MHz)] ;tl)?ocv)t.e threshold, there is significant obscuring noise from the
Nonclassical effects are optimized in the absence of losses
FIG. 3. Intensity-noise spectrum of the free-running 14$8Y.  gng far above threshold. Hence to study these effects we
(16)] with classical pump noisé/,=100(upper tracgand nonclas-  ahandon the approximation of EG.6) and adopt instead the
sical pump noise suppressiov,=0.1 (lower tracg. Other param- approximation that losses are negligible, i x,=0 and

— 2 —1 — —1 — -1
eteis8 Ozirios;—_lleldOl _g 2%11;7_6_'? wa ' ITFI:A.GT%)O;BSTH the stimulated emission rate is the most rapid in the problem,
Km0 S = andi=>. s - The QNLis a - "€ je.,Ga® T\ k,y. In this limit Eq. (14) becomes
frequency scale is in logarithms to base 10.

2
B. Intensity-noise characteristics of the free-running laser \Vj :w—
. . . ) ) i Ut w2+ (2k)?

Equation (14) is equivalent to an intensity-noise power
spectrum normalized to the quantum-noise limit. We illus- (2K)%(0%+ ¥?)
trate the strength of our approach by showing that our result + [2x(y+2D) — 2022+ w(dx+ y+ 2T)2 Vo
unifies previous results in a physically transparent manner.
We consider first the limit in which the decay rate out of the (2Kk)*[w?+(27)?]
lower lasing level is the most rapid in the problem, i.e., [2k(y+2T)— 2w+ w?(4k+y+2I')?" (18)

v>v,.T',k,Ga?. This is typical of gas and solid-state lasers

operating close to thresholdwithin approximately ten This equation unifies all the nonclassical effects previously
times. In this limit we get the following expression for the noted for this type of las€rl4,17,18. The only noise terms
spectrum: still significant are those due to the vacuum field input at the

_ o 2 2 2 mirror (first term), noise from the pump sourcesecond
Voul @) =1+{(2km) T+ (Ga"+ % +1)7] term), and spontaneous emission noise due to the decay from

— 8k kGaXGal+ y+T) the lower lasing levelthird term). Consider first the situation
in which the decay from the lower lasing level is much faster
+2k,G?a’[T 1V (@) + yd3]+ 2k,G than the cavity decay rate and the pump rate, ie]'«.

S [yt T2+ 02](Jat-J) + Ak Equation(18) reduces to

X[(Ga?+ 7+ )2+ w2 H{(0?— w?)? w’® (21)°

L Voum 2 a2 ot (22 VP
+o ()%, (16)

(183

The contribution from the lower lasing level decay is neg-
ligible. If the pump is quantum-noise limited, i.&,=1, the
_ > first and second terms add up to 1, for all frequencies. This is
wr=V2Ga'k A7 the standard result that lasers are guantum-noise limited well
above threshold and is the limiting result for E46), well
above threshold. We see that the quantum noise arises from
y =Ga?+ y+T. the pump at low frequencies and the vacuum noise at high
frequencieg14]. As we observed for Eq16) if the pump is
There is a resonance in the spectrum at frequesjcylf the ~ Squeezed then squeezing appears in the output spectrum at
resonance is underdamped,y,) an oscillation is pro- low frequencies. In this case the roll off of squeezing with
duced known as the resonant relaxation oscillatias]  frequency is a Lorentzian with a half-width of the cavity
(RRO) Below this frequency the pump noise and the quan.decay rate. Consider next the situation in which both the
tum noise due to spontaneous emission and phase decay R{Mp and lower lasing level decay rate are much faster than
the coherence appear in the spectrum. Above the RRO the#lze cavity decay rate, i.eI>«. Equation(18) reduces to
noises roll off due to the filtering effect of the cavity. In the

where

and

limit of high frequencies the spectrum tends to 1, indicating w? N (2)%y? v

the laser is quantum-noise limited at high frequencies. Figure U w24+ (2k)%  [(2k)?+ w?](y+2I)% TP

3 illustrates these features for parameters typical of solid- ) )

state lasers. Comparison of E46) with experimental spec- (2k)*(2') (180)

tra from miniature Nd:YAG ring lasers produces excellent [(2k)%+ w?](y+2I)?"
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Now both the pump and lower lasing level decay noise constrength for the two modes is the same. Following the pro-
tribute to the output noise. In fact the division of the noisecedure of Sec. Il, the operator equations of motion can be
between these two independent processes reduces the totaitten

noise contributed19]. This leads to 50% squeezing in the

output at low frequencies when the pump and decay ratesarex G . . . A

“matched” (y=2I). Once again the roll off of squeezing " 2 (037 02)a~

with frequency is Lorentzian.

The division of the low frequency noise between the +\2KmOAn+ V2K A — G525 SCpi+ SChy),
pump and the lower lasing level decay noise can also occur
in a frequency-dependent way, even if the pump rateismuch = G . . . A = an
slower than the decay rate. Consider the situation in which %7~ 72 (03— 02)ai— (k+1A)ai+ V2kmA+ V2K A

the cavity decay rate is faster than the lower level decay rate o - ~t
but both are much faster than the pump rate, ke:y>T. — G554 5Cpi+ 5CL)),
Now Eq. (18) reduces to

1= —05,BB+y5,— \y(6,0C5C T +6,6C 1 5C)

v w2 (2K)%(w?*+ yz) v _ ot o
= — — (H]
out w2+(2K)2+(2K'y—2w2)2+w2(4f<+7)2 p VO (1-00,)B(6Ct+6Cy), (21)
(26) 0?+(21)?] (180 2= G(53— 02) (g + M) + 13— ¥
(2K7—2w2)2+w2(4f<+y)2' _ — :
+Vy(6,6C5CH+5,6CTSC)
Under this condition the laser can be considered an open ~ T, T -
- + — +
system, i.e., the ground level is an undepleted resefasir \/%(035Ctact 0720C10C) ~ VG (03+72)
for Egs.(16) and (18a@]. The resonance in the denominator X (8Cp¢+ 8CLe) — VGR(05+ ) (8Cpi+ SCL)),
of EqQ. (180 at
o3=—G(G3— o) (g + 1) — 7,05+ 0 5,B'B
ws=\//<_y (19 3 (o3 2)(Ng i)~ %03 1

—n(638C,5C + 6,5CT 5C,)
is now inside the cavity linewidth. At frequencies close to _ At A _
the resonance, noise is divided between contributions from V001 (1-001)B(5C;+ 0Cy) + VGne(o3+ 07)

the pump and the lower level decay rate in much the same - -t [Choa550) A -t
way as when the rates are matched. In the limit tkeaty, X (8Cp+ 8Cpe) + VG (03+02)(Cpi+ 5Cpy),

50% squeezing is produced at frequencies closestoThe where the definitions are the same as in Sec. Il A. The sub-

physical mechanism behind this effect is the storage of elecs'criptsi andf are included when fields pertain to the injected

trons in the lasing levels for times long compared to theor free modes, respectively. The input field from the master

cavity decay _time. The supsequent noise filtering effect PTO7aser is labeled. The detuning between the input field and
duces the noise suppression. the slave cavity ish

n Fh's section we have ShOW.” how th_e three-level laser Once again the semiclassical equations of motion are ob-
equations can be .solved fqr their fluc_tu_atlon Spectrum SO ag,;no g by ignoring the zero-point fields. We assume that the
to produce analytical solutions containing more detail in ainput field is real. Notice that this forces the locked mode to

physically clear way than previous methods. In the next S€%e complex for all but zero detunings. An examination of the

ﬂ)oclg\:jelgsggahze the approach to the problem of InJeCtIOh'behavior of the semiclassical steady state as a function of the

detuning between the input field and the cavity resonance

reveals the standard injection locking behavi}. At large

IV. SPECTRUM OF THE INJECTION-LOCKED LASER detunings there is very little buildup of the input field in the

laser cavity and hence negligible interaction with the active

atoms. The output of the laser is just the geometric addition

We now consider the effect of an injected field. The las-of the master and slave fields. As the detuning is reduced the

ing transition of theN atoms now interacts with two optical injected field intracavity intensity increases and starts to rob

ring cavity modes via the Jaynes-Cummings Hamiltonian gain from the free-running mode, which begins to drop in
R e R o o intensity. Eventually, when the gain to loss balance of the
H=ihg(& 025 +a] 03— 81035—8:03%). (200 injected mode equals that of the free-running mode, the free-

running mode is extinguished. This occurs when
The modeg; is resonant with the input field from the master

A. Solving for the injection-locked spectrum

but may be detuned from the slave laser cavity resonance. _N2kpA 22
The modea; is the resonant free-running mode of the slave. P (22

Each mode induces an independent dipole interaction with

the lasing levels modeled by lowering and raising operatorhe detuning), is called the locking range and; is the

for each moddalso labeled andf ). We have assumed that semiclassical steady-state value of the free-running laser per
for the range of frequencies considered the dipole couplingoot atom in the absence of an injected fieddis the semi-
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classical amplitude of the injected field per root atom. Noteand spectral analysis of the fluctuations proceeds as in Sec.
that the input fields are traveling wave fields tha$® is the  1ll A. An additional complication, arising from the detuning
photon flux of the master field in units of photons per atomof the locked mode, is the coupling of the amplitude quadra-
per second. For detunings less than the locking range thire of the output field with the phase quadrature of the in-
free-running mode does not oscillate and the slave laser acternal and injected fields. The amplitude fluctuation spectrum
as an optical amplifier for the injected field. Linearizationis given by

N 2 kA2 2
|| C N2kpAr
PG P A

|a'i|

Voulw) = 2km—iw+Fi(w)— Vin(w)

+ 2Kl I1[Fo( ) 12V (@) + 2k ¥do[ Fa(@) 12+ 2k 1 da[ Fa( @) 12+ 2kG (I3 +J5)

\ 2KmA| 2 \ 2KmA| 2

X[ [1=Fy(w)]?+ +(2Kkm)? V(o)
4 . \/Z_KmAR m - \/Z_KmAR in
|| 1o+ T |ail| i+ ————
|l | il

2

V2kmA, 2 , V2knAr 2k A2
iw—Fq(w)+

+4k K| 1+ +
"  \2kmAR |ail  \2kmAR
lail| o+ ——— lai|?| 0+ ———
|ail |ai
(23
|
where the definitions are as for E34) (see also the Appen- , , 2k A
dix) with the substitutione—|a;|. The amplitude fluctuation X(Gaf+ y+T')~Vidkno :
spectrum of the injected master is denotég while the %

phase fluctuation spectrum of the injected master is denoted + szGZaiZ(Fleer Yid3) + 2k G (1 +T)%+ w?]
Vi,. Also we have used

X(J3+J2) + 4KmK|
Ao Ala]

NP X[(Gaf+n+T)?+0?]l [ {(0f—0®)?+ v},

and (24
where
Ag=JAZ—A?.
/2K A 1/2
The master can be modeled explicitly by using Hdd) and wy=| G2af(J3—Jp) + m - (Gal+y+T)
(15) as the input amplitude and phase spectra, respectively. :
Alternatively idealized or empirically determined spectra cangng
be used.
_ Galt yt T Y2
B. Intensity-noise behavior of the injection-locked laser YLu=Bai T Y a

We will now examine the properties of E(®3). First we
consider the limit of the lower lasing level decay rate being
very rapid[as for Eq.(16)]. We limit our discussion, ini-
tially, to the case in which the injected field is resonant with
the slave cavity. We get the expression

Note thate; is real for zero detunings. We can identify three
distinct frequency regimes in Eq24). For simplicity we
assume that the locking range and cold cavity linewidth are
much larger than the stimulated emission rate, pump rate,
and spontaneous emission rate, i.e.,

Vou= Vint | Vin(2&m) [ 02+ (Gal + 3 +1)?] A~k>Gaf T,y (25)

JZrA This is a good approximation for most solid-state lasers.
m™ (Gai2+ y+T) (i) Amplification regime.The resonance that appeared in
a; the free-running casgsee EQq.(16)] is still present in the

—vm4xm< G2a?(J3— 3+
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denominator for the locked case at roughly the same fre-
qguency, i.e.,w, ~wo,. However, the damping term is now %
much larger due to the presence of the injected field. In fact
the damping term is now roughly equivalent to the locking (d‘é")f 15
range, i.e.,y ;=A,. For sufficiently large values of the in- 10

jected field such thag, ;> w,, (or roughly such that the lock-
ing range is larger than the free-running RRO frequéics

5

resonance is overdamped and does not produce an oscilla- -20 -10 10 20
tion. Instead in the frequency region close to the resonance -5 \
the injected fluctuations are amplified. If we simplify the -10

spectrum[Eq. (24)] using Eqg.(25) and assume that we are 10 Log [Frequency (MHz)]

close to the resonance, i.e.,
FIG. 4. Intensity-noise spectrum of the injection-locked laser for
o= o, (26)  zero detunindEq. (24)] with classical pump noisey,=100. The
master spectrum i¥;,=10 (upper tracg V;,=1 (middle trace, and
we obtain V,,=0.1 (lower trace. The injected field flux i#?=0.07 s . Other
parameters are the same as in Fig. 3.
2Kmai2 22 kme; G(J3+J2)ai2

Vour= Vin| 1+ —z—— + 2 (or roughly the square of the free-running RRO frequency
A A A - ; . .
divided by the locking range In addition noise sources as-
4Klai2 sociated with the free-running dynamics of the slave laser
=ViH+(H-1)+ —>—, (27)  roll on. If we add the extra condition that we are well above

threshold Ga?>T>+y,) and consider frequencies very

where H=(2«,,a;—A)%/A? is the semiclassical intensity close to dd{w~0) then Eq.(24) becomes

amplification factor{see Eq.(11)]. In deriving Eq.(27) we

have also used the fact that in the presence of rapid decay ~ VinA?+ V'

from the lower lasing level);>J,, to simplify the second M (2kgai—A)2

term. In the limit of negligible losse&=0), Eq. (27) re-

duces to the standard result for an ideal linear optical ampli- — PinVint PrreeVs (31)
fier [20]. The injected fluctuations are amplified by the semi-  PintPree

classical amplification factof2] (first term). In addition
quantum fluctuations introduced by the phase decay of thehere we have used the fact that far above threshold, with
lasing coherencd14] (second term and the intracavity small losses £,>«|), energy conservation demands
losses(third term are also amplified. Note that other noise I'J;=2kya?%Pyee, Where Py is the free-running output
features of the free-running slave, such as pump noise, agower for the same pump rate, and alsg2fma;—A)?
suppressed. The width of the amplification regime depends P, = Pj,+ Pjsee. Under these same assumptions the spec-
on how strongly the resonance is damped and hence is ifrum of the free-running slaviEq. (14)] is just determined
versely related to the locking range. by the pump noise, i.eVi=V, (see Sec. lll B. Hence at

(i) High frequency regimelf we move to frequencies low frequencies the output spectrum is just the independent
much higher than the resonance the amplification rolls offaddition of the fluctuations of the injected and free-running

until at frequencies modes and is analogous to the spectrum when the lasers are
not locked.
VinKﬁﬁ— Ak 1?2 Given the preceding discussion we may ask what the nor-
0> V—m (28) malized spectrum of a large, noisy laser locked to a small

quieter laser would be. In Fig. 4 we show the spectrum of a
slave lasefwhose free-running spectrum is the same as for
Fig. 3, with classical pump noigdocked to a quantum-noise
V. =V (29) limited master, a master with white noise 10 dB above the
out= Tin guantum-noise limit, and a master with squeezed white noise
e10 dB below the quantum-noise limit. The intensity amplifi-
tion factor between the master and the locked slavelid
imes. At low frequencies the slave pump noise dominates
simply reflected off the front mirror. _[Eq. (3D)]. The noi_se due to the maste_r_rollg on Wit_h increas-
ing frequency until we reach the amplification regime where

(i) Low frequency regimelf we move to frequencies ; . i : . e
lower than the resonance we also get a roll off of the ampli_the noise of the master is amplified by the intensity amplifi-

fication of the fluctuations of the injected field. The cornerCatlon factor plus_ a guantum-noise pe_r1d]l§q. (.27)]' Fi-
frequency for this roll off is given by nally, at frequencies well above the cavity linewidth, we see

just the quantum noise of the masfe&q. (29)]. We compare
i the predictions of Eq(24) with results obtained using min-

1 (30) iature Nd:YAG ring lasers in Ref.7] and find good quanti-
YL tative agreement.

we find

Physically we are outside the laser cavity linewidth, henc
high frequency fluctuations inside the cavity are suppresse
while high frequency fluctuations on the injected field are

We
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C. Nonclassical effects preserved in the high frequency regime.

We now consider applications of the injection-locked la- (i) Low frequency regimelf the slave laser is well above
ser for production and manipulation of squeezed light. In théhreshold Eq(31) tells us that at low frequencies the slave
amplification regime the amplified dipole fluctuatiofsec- laser spectrum is an independent combination of fluctuations
ond term in Eq(27)] mask nonclassical effects for amplifi- from the master laser and from the slave laser pump. If the
cation factors of 2 or more. However, in the low and highmaster field is small compared to the output of the cavity
frequency regimes nonclassical effects can be preserved. (A;<y2kna) the pump fluctuations will dominate. There-

(i) High frequency regimeAccording to Eqg.(29) in the  fore for a laser with a regularized pumpgee Sec. Il B
high frequency regime the output spectrum of the injection-squeezing will still be seen with a small injected signal. In
locked laser is identical to that of the master. If the inputdiode lasers pumped with a regularized current the presence
light from the master is squeezed then the output from th@f weakly lasing longitudinal side modes can degrade the
slave will also be squeezed. Thus the intensity of a brightqueezing produced. An injected field will suppress these
squeezed light source can be increased without destroyingide modes. In this way injection locking has been used to
the squeezin§1]. This is illustrated by the spectrum for the improve the squeezing obtained from semiconductor lasers
squeezed master in Fig. 4. Notice that the signal resolution dfL]. In fact if we consider the situation in which the stimu-
the mastefthe separation between traces for different mastelated emission rate is very rapid and losses are negligide
noise level} is reduced in the amplification regime but is for Eq. (18)] we find

, 2kA? 2\2kA
o+ 5 (2K)| 2k— (w2+ yz)

V= & V, + & Vv
out 2kA\ 2" J2kA 2 J2kA 2P
w’+| 2k— K— (y+2IN)—2w?| +0? 2| 2k— +y+2T
a; i a;

2\ 2kA
(2k)| 2x— [w2+(21)?]
i
} (32
V2kA 2 V2kA 2
2k— (y+2I)—2w?| +w?|2| 2k— +y+2I
[oF] a;

Provided the master field is small compared to the output ohoise suppressigmwith that of the locked laser. As noted in
the cavity and the slave spectrum is quantum-noise limitedec. Il B, the free-running laser is too close to threshold to
then the output spectrum is virtually unchanged from that oshow good squeezing. The injection of a large signal from a
the free-running case for all frequencies, hence all squeezinguantum-noise limited master significantly improves the fre-
mechanisms are unaffected. Note that in the limit of beingiuency range of the squeezing.
very far above threshold there is no amplification regime.

Increased squeezing can also be produced through a D. The effect of detuning

single mode effec{62]. If the slave Iasgr is not far enqugh From Eq.(23) we find that a detuning between the input
above thresholdGa=I) then squeezing from regularized fig|q and the slave laser cavity affects the output spectrum in
pumping is reduced by the presence of dipole fluctuationgee gistinct ways. First the detuning introduces a
and the RRO. Notice, however, that if the injected field isfrequency-dependent rotation of the noise quadrature of the
increased then the internal mode amplitudg) will also  master field which is amplified. Hence phase noise from the
increase such that for a sufficient injected fi@d ?>I" can  master appears in the output intensity spectrum of the slave.
be satisfied and the dipole fluctuations and RRO are supfhe rotation of the noise quadrature is most pronounced at
pressed. On the other hand, as the injected field gets largerldwer frequencies and high detunings.

contributes more of its own fluctuations to the spectrum via Secondly the additional terms in the denominator change
Eqg. (31). Nevertheless, if a quantum-noise limited master isthe position of the corner frequen¢izg. (30)] marking the
used, squeezing from all three mechanisms discussed in Seoll off of pump noise and the beginning of the amplification
[l B can be produced at lower slave pump powers usingegime. The effect is to increase the damping term in the
injection locking. At pump powers at which squeezing isdenominator and hence reduce the corner frequency leading
already optimized in the free-running case, injection lockingto a lower frequency roll off of pump noise and a wider
can only reduce the amount of squeezing in a single modamplification regime. The combination of this effect with the
situation by adding its own noise. The effect is illustrated inrotation of the noise quadrature means that for detunings
Fig. 5 by comparing the low frequency squeezing of theclose to the edge of the locking range the amplification re-
free-running lasefsame parameters as Fig. 3, with pumpgime extends to low frequencies where almost pure phase
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3 30
V”'” 2 Vout
(dB) (dB)
1
-25 -20 -15
-1
= -20 -10 10 20
-3 10 Log [Frequency (MHz)] (a) 10 Log [Frequency (MHz)]
FIG. 5. Intensity-noise spectrum of the free-running ldseper / ".‘
trace, Eq(16)] and the injection-locked las@iower trace, Eq(24)] %
with nonclassical pump noise suppressivg=0.1. The master la- Vom
ser is guantum-noise limitedyj,=1. The injected field flux is (dB)
A?=0.42 s'*. Other parameters are the same as in Fig. 3.
noise from the master is amplified.
Thirdly, a second resonance appears in the denominator at 20 1o 10 20
approximately the detuning frequency once the detuning be- 10 Log [Frequency (MHz
comes larger than roughly half the locking range. This leads (b) g [Frequency ( )]

to an enhancement of all noise sources at frequencies close to

the detuning frequency. The origin of this noise source is FIG. 6. Intensity-noise spectra of the injection-locked laser with

X . - detuningA=1.8 MHz (a) andA=3.4 MHz (b). The master noise is
beating between transient photons at the free-running fre\-/in:10 andV;- =10 (dashed trace and gray traaw Vi, =1 (solid

quency and the strong photon field at the |njegted_frequenc¥race_ The gray traces show zero detuning. All other parameters are
We illustrate the various effects of detuning in Fig. 6. 4 o came as in Fig. 4.

Figure Ga) shows the effect of a moderate detuning. The
dashed line is for a master with equally noisy amplitude and
phase quadratures, while the solid line is for a master with . ) o .
amplitude noise but quantum-noise limited phase noise. Thautput field. The separation of the solution into the various
gap between these curves is a measure of the rotation of tHise contributions allows greater physical insight into the
amplified quadrature of the master. For comparison the zeroise processes and also allows for the inclusion of the full
detuning case is include@ray tracé. Some quadrature ro- Spectral properties of the pump field and any other input
tation and broadening of the amplification regime can bdields.
observed. Figure (B) is for a detuning close to the edge of We have demonstrated the approach by solving for the
the locking range. Now strong quadrature rotation and broadamplitude quadrature spectrum of a four-level laser and de-
ening of the amplification regime can be observed. In addiscribing its classical and nonclassical behavior. In particular,
tion the resonance at the detuning frequency is seen. we have shown that the physical mechanism for nonzero
Although we will not elaborate here it is possible to ex- frequency squeezing in open lasers is a noise filtering effect
tend the theory so as to examine the noise spectra of the tWue to the storage of atoms in the lasing levels. At nonzero

independent modes outside the locking range. The spectfgequencies this distributes the noise between the pump and
move smoothly from the locked to unlocked case. The amne |ower lasing level decay in much the same way as in a
plification of the injected mode noise drops with the ampli- ate matched laser.

fication of its intensity as the detuning is made larger. While 1o have applied the method to injection-locked lasers
the beat note grows rapidly as a steady state, free-runnm&qd derived solutions with more detail than those previously

intensity is established in the cavity. The spectrum of theé)resented. We have investigated the behavior of the solutions
free-running mode behaves in an analogous way to a laser

being pumped further and further above threshold as the in"Zmd identified three distinc? frequepcy re'gimes in the noise
creasing detuning increases the gain available. Hence f&pectrum. At IOV.V freqygnmes the mtens.lty fluctuations are
example, the RRO frequency will increase with the squar ust the geometric addmon of th_e fluctuations from the mas-
root of the free-running intensity as per Ed.7). At suffi- ter (Scaleq by th_e ma§te_r intensitgnd the slavéscaleq by_
ciently high detunings the two spectra become completel}he slave intensify This is almost thg same as the S|tuat|or_1
independent. when the master has a large detuning from the slave cavity
resonancémuch larger than the locking rangeit middle
V. CONCLUSION frequencies the master fluctuations are amplified in the same
way as by a linear optical amplifier. Slave noise sources are
We have shown that the linear input-output method carsuppressed. At high frequencies the output is just the master
be used to solve for the quantum fluctuations of an atomidluctuations scaled by the slave intensity. We show that the
laser. The method is straightforward in its solution and leaddoundaries of these regimes are determined by the amplifi-
to analytical results for the full spectral properties of thecation ratio between the master and the slave, the output
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intensity of the free-running slave, and the detuning between ACKNOWLEDGMENTS
the master and the slave.

We have noted qualitatively the relationship between ou
results and those of experiments. The apparent discrepancy
between Refd.1] and[2] is shown to be because the results
of Ref.[1] were obtained in the low frequency regime while APPENDIX
those of Ref[2] were obtained in the amplification regime.

In Ref. [7] we make a quantitative comparison between This appendix contains the definitions of the functions
theory and experiment. that appear in Eqg13), (14), and(24).

We would like to thank I. Freitag, C. M. Savage, and H.
iseman for useful discussions.

G2a%(J13—J3,)(2iw+2I'+ )

F1lo) = ot Ty (0t 1 +2Ga?+ )+ 1(Ga?+ 7))’
E B Ga(io+y—y)

2(w)= (lo+D)(iw+ y+2Ga?+ y)+ y(Ga’+y,)

. (A1)

E B Ga(io+2T'+y,)

s(w)= (o+D) (ot y+2Ga?+ y)+ y(Ga’+y)"’
. _ GaRio+2I'+y)

aw)= (io+D)(iw+ y+2Ga’+ )+ Y(Ga’+ v,)
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