814 research outputs found
Interplane charge dynamics in a valence-bond dynamical mean-field theory of cuprate superconductors
We present calculations of the interplane charge dynamics in the normal state
of cuprate superconductors within the valence-bond dynamical mean-field theory.
We show that by varying the hole doping, the c-axis optical conductivity and
resistivity dramatically change character, going from metallic-like at large
doping to insulating-like at low-doping. We establish a clear connection
between the behavior of the c-axis optical and transport properties and the
destruction of coherent quasiparticles as the pseudogap opens in the antinodal
region of the Brillouin zone at low doping. We show that our results are in
good agreement with spectroscopic and optical experiments.Comment: 5 pages, 3 figure
Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites
We report a study of magnetic dynamics in multiferroic hexagonal manganite
HoMnO3 by far-infrared spectroscopy. Low-temperature magnetic excitation
spectrum of HoMnO3 consists of magnetic-dipole transitions of Ho ions within
the crystal-field split J=8 manifold and of the triangular antiferromagnetic
resonance of Mn ions. We determine the effective spin Hamiltonian for the Ho
ion ground state. The magnetic-field splitting of the Mn antiferromagnetic
resonance allows us to measure the magnetic exchange coupling between the
rare-earth and Mn ions.Comment: accepted for publication in Physical Review Letter
Charge dynamics in the half-metallic ferromagnet CrO\u3csub\u3e2\u3c/sub\u3e
Infrared spectroscopy is used to investigate the electronic structure and charge carrier relaxation in crystalline films of CrO2 which is the simplest of all half-metallic ferromagnets. Chromium dioxide is a bad metal at room temperature but it has a remarkably low residual resistivity (\u3c5 \u3eμΩ cm) despite the small spectral weight associated with free carrier absorption. The infrared measurements show that low residual resistivity is due to the collapse of the scattering rate at ω\u3c2000 \u3ecm-1. The blocking of the relaxation channels at low v and T can be attributed to the unique electronic structure of a half-metallic ferromagnet. In contrast to other ferromagnetic oxides, the intraband spectral weight is constant below the Curie temperature
Optical characterization of BiSe in a magnetic field: infrared evidence for magnetoelectric coupling in a topological insulator material
We present an infrared magneto-optical study of the highly thermoelectric
narrow-gap semiconductor BiSe. Far-infrared and mid-infrared (IR)
reflectance and transmission measurements have been performed in magnetic
fields oriented both parallel and perpendicular to the trigonal axis of
this layered material, and supplemented with UV-visible ellipsometry to obtain
the optical conductivity . With lowering of temperature we
observe narrowing of the Drude conductivity due to reduced quasiparticle
scattering, as well as the increase in the absorption edge due to direct
electronic transitions. Magnetic fields dramatically
renormalize and asymmetrically broaden the strongest far-IR optical phonon,
indicating interaction of the phonon with the continuum free-carrier spectrum
and significant magnetoelectric coupling. For the perpendicular field
orientation, electronic absorption is enhanced, and the plasma edge is slightly
shifted to higher energies. In both cases the direct transition energy is
softened in magnetic field.Comment: Final versio
Plasmonic Hot Spots in Triangular Tapered Graphene Microcrystals
Recently, plasmons in graphene have been observed experimentally using
scattering scanning near-field optical microscopy. In this paper, we develop a
simplified analytical approach to describe the behavior in triangular samples.
Replacing Coulomb interaction by a short-range one reduces the problem to a
Helmholtz equation, amenable to analytical treatment. We demonstrate that even
with our simplifications, the system still exhibits the key features seen in
the experiment.Comment: 4 pages, 3 figure
Modeling of Plasmonic and Polaritonic Effects in Photocurrent Nanoscopy
We present a basic framework for modeling collective mode effects in
photocurrent measurements performed on two-dimensional materials using
nano-optical scanned probes. We consider photothermal, photovoltaic, and
bolometric contributions to the photocurrent. We show that any one of these can
dominate depending on frequency, temperature, applied bias, and sample
geometry. Our model is able to account for periodic spatial oscillations
(fringes) of the photocurrent observed near sample edges or inhomogeneities.
For the case of a non-absorbing substrate, we find a direct relation between
the spectra measured by the photocurrent nanoscopy and its parental scanning
technique, near-field optical microscopy.Comment: 16 pages, 7 figure
- …