36 research outputs found

    Dynamic Diagnosis of Familial Prion Diseases Supports the β2-α2 Loop as a Universal Interference Target

    Get PDF
    [Background] Mutations in the cellular prion protein associated to familial prion disorders severely increase the likelihood of its misfolding into pathogenic conformers. Despite their postulation as incompatible elements with the native fold, these mutations rarely modify the native state structure. However they variably have impact on the thermodynamic stability and metabolism of PrPC and on the properties of PrPSc aggregates. To investigate whether the pathogenic mutations affect the dynamic properties of the HuPrP(125-229) α-fold and find possible common patterns of effects that could help in prophylaxis we performed a dynamic diagnosis of ten point substitutions.[Methodology/Principal Findings] Using all-atom molecular dynamics simulations and novel analytical tools we have explored the effect of D178N, V180I, T183A, T188K, E196K, F198S, E200K, R208H, V210I and E211Q mutations on the dynamics of HuPrP(125-228) α-fold. We have found that while preserving the native state, all mutations produce dynamic changes which perturb the coordination of the α2-α3 hairpin to the rest of the molecule and cause the reorganization of the patches for intermolecular recognition, as the disappearance of those for conversion inhibitors and the emergence of an interaction site at the β2-α2 loop region.[Conclusions/Significance] Our results suggest that pathogenic mutations share a common pattern of dynamical alterations that converge to the conversion of the β2-α2 loop into an interacting region that can be used as target for interference treatments in genetic diseases.This work was supported in parts by grants BFU2009-07971 from the MICINN (MG), FundaciÃ3n Cien (MG); Fondazione Cariplo (GC) and AIRC (GC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for this study.Peer reviewe

    Biosynthetic potential of the global ocean microbiome

    Get PDF
    Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds. However, studying this diversity to identify genomic pathways for the synthesis of such compounds and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters ('Candidatus Eudoremicrobiaceae') that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environments

    Biosynthetic potential of the global ocean microbiome

    Get PDF
    8 pages, 4 figures, supplementary information https://doi.org/10.1038/s41586-022-04862-3.-- This Article is contribution number 130 of Tara OceansNatural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of such compounds4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters (‘Candidatus Eudoremicrobiaceae’) that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environmentsThis work was supported by funding from the ETH and the Helmut Horten Foundation; the Swiss National Science Foundation (SNSF) through project grants 205321_184955 to S.S., 205320_185077 to J.P. and the NCCR Microbiomes (51NF40_180575) to S.S.; by the Gordon and Betty Moore Foundation (https://doi.org/10.37807/GBMF9204) and the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101000392 (MARBLES) to J.P.; by an ETH research grant ETH-21 18-2 to J.P.; and by the Peter and Traudl Engelhorn Foundation and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 897571 to C.C.F. S.L.R. was supported by an ETH Zurich postdoctoral fellowship 20-1 FEL-07. M.L., L.M.C. and G.Z. were supported by EMBL Core Funding and the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft, project no. 395357507, SFB 1371 to G.Z.). M.B.S. was supported by the NSF grant OCE#1829831. C.B. was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement Diatomic, no. 835067). S.G.A. was supported by the Spanish Ministry of Economy and Competitiveness (PID2020-116489RB-I00). M.K. and H.M. were funded by the SNSF grant 407540_167331 as part of the Swiss National Research Programme 75 ‘Big Data’. M.K., H.M. and A.K. are also partially funded by ETH core funding (to G. Rätsch)With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Exceeding the limit of dynamics studies on biomolecules using high spin-lock field strengths with a cryogenically cooled probehead.

    No full text
    Internal motions in the microsecond timescale have been proposed to play an active part in a protein’s biological function. Nuclear magnetic resonance (NMR) relaxation dispersion is a robust method sensitive to this timescale with atomic resolution. However, due to technical limitations, the observation of motions faster than 40 l s for 15 N nuclei was not possible. We show that with a cryogenically cooled NMR probehead, a high spin-lock field strength can be generated that is able to detect motions as fast as 25 l s. We apply this high spin-lock field strength in an NMR experiment used for characterizing dynamical processes. An on-resonance rotating-frame transverse relaxation experiment was imple- mented that allows for the detection of a 25 l s process from a dispersion curve, and transverse relaxation rates were compared at low and high spin-lock field strengths showing that at high field strengths con- tributions from chemical exchange with lifetimes up to 25 l s can be removed. Due to the increase in sen- sitivity towards fast motion, relaxation dispersion for a residue that undergoes smaller chemical shift variations due to dynamics was identified. This technique reduces the previously inaccessible window between the correlation time and the relaxation dispersion window that covers four orders of magnitude by a factor of 2
    corecore