293 research outputs found

    Net Ecosystem Carbon Balance in a North Carolina, USA, Salt Marsh

    Get PDF
    Salt marshes have among the highest carbon (C) burial rates of any ecosystem and often rely on C accumulation to gain elevation and persist in locations with accelerating sea level rise. Net ecosystem carbon balance (NECB), the accumulation or loss of C resulting from vertical CO2 and CH4 gas fluxes, lateral C fluxes, and sediment C inputs, varies across salt marshes; thus, extrapolation of NECB to an entire marsh is challenging. Anthropogenic nitrogen (N) inputs to salt marshes impact NECB by influencing each component of NECB, but differences in the impacts of fertilization between edge and interior marsh must be considered when scaling up. NECB was estimated for the 0.5 km2 Spartina alterniflora marsh area of Freeman Creek, NC, under control and fertilized conditions at both interior and edge berm sites. Annual CO2 fluxes were nearly balanced at control sites, but fertilization significantly increased net CO2 emissions at edge sites. Lateral C export, modeled using respiration rates, represented a significant C loss that increased with fertilization in both edge and interior marsh. Sediment C input was a significant C source in the interior, nearly doubling with fertilization, but represented a small source on the edge. When extrapolating C exchanges to the entire marsh, including edge which comprised 17% of the marsh area, the marsh displayed net loss of C despite a net C gain in the interior. Fertilization increased net C loss fivefold. Extrapolation of NECB to whole marshes requires inclusion of C fluxes for both edge and interior marsh

    Magnetic systems at criticality: different signatures of scaling

    Get PDF
    Different aspects of critical behaviour of magnetic materials are presented and discussed. The scaling ideas are shown to arise in the context of purely magnetic properties as well as in that of thermal properties as demonstrated by magnetocaloric effect or combined scaling of excess entropy and order parameter. Two non-standard approaches to scaling phenomena are described. The presented concepts are exemplified by experimental data gathered on four representatives of molecular magnets.Comment: 33 pages, 16 figure

    Directional Reflectance Studies in Support of the Radiometric Calibration Test Site (RadCaTS) at Railroad Valley

    Get PDF
    The Radiometric Calibration Test Site (RadCaTS) is a suite of commercial and custom instruments used to make measurements of the surface reflectance and atmosphere throughout the day at Railroad Valley, Nevada. It was developed in response to the need for daily radiometric calibration data for the vast array of Earth-observing sensors on orbit, which is continuously increasing as more nations and private companies launch individual environmental satellites as well as large constellations. The current suite of instruments at RadCaTS includes five ground-viewing radiometers (GVRs), four of which view the surface in a nadir-viewing configuration. Many sensors such as those on Landsat-7 and Landsat-8 view Railroad Valley within 3 of nadir, while others such as those on Sentinel-2A and -2B, RapidEye, Aqua, Suomi NPP, and Terra can view Railroad Valley at off-nadir angles. Past efforts have shown that the surface bidirectional reflectance distribution function (BRDF) has minimal impact on vicarious calibration uncertainties for views <10, but the desire to use larger view angles has prompted the effort to develop a BRDF correction for data from RadCaTS. The current work investigates the application of Railroad Valley BRDF data derived from a BRF camera developed at the University of Arizona in the 1990s (but is no longer in use) to the current RadCaTS surface reflectance measurements. Also investigated are early results from directional reflectance studies using a mobile spectro-goniometer system during a round-robin field campaign in 2018. This work describes the preliminary results, the effects on current measurements, and the approach for future measurements

    Enzymatic Activities of Isolated Cytochrome bc1-like Complexes Containing Fused Cytochrome b Subunits with Asymmetrically Inactivated Segments of Electron Transfer Chains

    Get PDF
    Homodimeric structure of cytochrome bc_1, a common component of biological energy conversion systems, builds in four catalytic quinone oxidation/reduction sites and four chains of cofactors (branches) that, connected by a centrally located bridge, form a symmetric H-shaped electron transfer system. The mechanism of operation of this complex system is under constant debate. Here, we report on isolation and enzymatic examination of cytochrome bc1-like complexes containing fused cytochrome b subunits in which asymmetrically introduced mutations inactivated individual branches in various combinations. The structural asymmetry of those forms was confirmed spectroscopically. All the asymmetric forms corresponding to cytochrome bc_1 with partial or full inactivation of one monomer retain high enzymatic activity but at the same time show a decrease in the maximum turnover rate by a factor close to 2. This strongly supports the model assuming independent operation of monomers. The cross-inactivated form corresponding to cytochrome bc_1 with disabled complementary parts of each monomer retains the enzymatic activity at the level that, for the first time on isolated from membranes and purified to homogeneity preparations, demonstrates that intermonomer electron transfer through the bridge effectively sustains the enzymatic turnover. The results fully support the concept that electrons freely distribute between the four catalytic sites of a dimer and that any path connecting the catalytic sites on the opposite sides of the membrane is enzymatically competent. The possibility to examine enzymatic properties of isolated forms of asymmetric complexes constructed using the cytochrome b fusion system extends the array of tools available for investigating the engineering of dimeric cytochrome bc1 from the mechanistic and physiological perspectives

    Development of a human knee joint finite element model to investigate cartilage stress during walking in obese and normal weight adults

    Get PDF
    Osteoarthritis (OA) is a degenerative condition characterized by the breakdown and loss of joint articular cartilage. While the cause of OA is not precisely known, obesity is a known risk factor [1]. Particular effort has gone towards understanding the relationship between obesity and knee OA because obesity is more strongly linked to OA at the knee than at any other lower extremity joint [2]. Although the relationship between obesity and knee OA is well established, the mechanism of pathogenesis is less understood. Excess body weight generates greater joint contact forces at the knee. However, obese individuals alter their gait, resulting in increased joint contact forces that are not proportional to body mass [3]. In this study, a partially validated knee joint finite element (FE) model was developed to predict cartilage loading during walking across individuals of varying adiposity. The model was used with kinematic and kinetic gait data to address the following hypotheses: 1) increased loading due to obesity will produce greater cartilage stress compared to the normal weight control; and 2) altered gait kinematics of obese individuals will alter the distribution of stress on the surface of the tibial cartilage

    Human knee joint finite element model using a two bundle anterior cruciate ligament: Validation and gait analysis

    Get PDF
    Anterior cruciate ligament (ACL) deficient individuals are at a much higher risk of developing osteoarthritis (OA) compared to those with intact ACLs, likely due to altered biomechanical loading [1]. Research indicates the ACL is comprised of two “bundles”, the anteromedial (AM) and posterolateral (PL) bundles [2]. Although the function of both bundles is to restrain anterior tibial translation (ATT), each bundle has their own distinct range of knee flexion where they are most effective [3]. Articular cartilage contact stress measurements are difficult to measure in vivo. An alternative approach is to use knee joint finite element models (FEMs) to predict soft tissue stresses and strains throughout the knee. Initial and boundary conditions for these FEMs may be determined from knee joint kinematics estimated from motion analysis experiments. However, there is a lack of knee joint FEMs which include both AM and PL bundles to predict changes to articular cartilage contact pressures resulting from ACL injuries. The purpose of this study is to develop and validate a knee joint FEM using both AM and PL bundles and subsequently perform a gait analysis of varying ACL injuries

    Landsat-7 ETM+ Radiometric Calibration Status

    Get PDF
    Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effect tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.31 W/sq m/ sr/micron bias error. The updated lifetime trend is now stable to within + 0.4K

    A patient with heart failure, who is frail: How does this affect therapeutic decisions?

    Get PDF
    Patients with heart failure (HF) are heterogeneous, not only related to comorbidities but also in the presentation of frailty syndrome. Frailty syndrome also affects patients with HF across the lifespan. Frailty in patients with HF has a significant impact on clinical features, diagnosis, management, adverse medical outcomes and costs. In everyday clinical practice, frail patients with HF require an individualized approach, often imposing the need to modify therapeutic decisions. The aim of this review is to illustrate how frailty and multimorbidity in HF can affect therapeutic decisions. The scientific evidence underlying this publication was obtained from an analysis of papers indexed in the PubMed database. The search was limited to articles published between 1990 and July 2022. The search was limited to full-text papers published in English. The database was searched for relevant MeSH phrases and their combinations and keywords including: “elderly, frail”; “frailty, elderly”; “frail older adults”; “frailty, older adults”; “adult, frail older”; “frailty, heart failure”; “frailty, multimorbidity”; “multimorbidity, heart failure”; “multimorbidity, elderly”; “older adults, cardiovascular diseases”. In therapeutic decisions regarding patients with HF, additionally burdened with multimorbidity and frailty, it becomes necessary to individualize the approach in relation to optimization and treatment of coexisting diseases, frailty assessment, pharmacological and non-pharmacological treatment and in the implementation of invasive procedures in the form of implantable devices or cardiac surgery

    Transcultural adaptation and theoretical models of validation of the spanish version of the self-care of heart failure index version 6.2 (schfi v.6.2)

    Get PDF
    Background: Heart failure (HF) is a major and growing public health problem worldwide. Across the world, heart failure is associated with high mortality, high hospitalization rates, and poor quality of life. Self-care is defined as a naturalistic decision-making process involving the choice of behaviors that maintain physiologic stability, the response to symptoms when they occur, and the ability to follow the treatment regimen and control symptoms. One instrument used to measure self-care is the Self Care of Heart Failure Index. Aim: The purpose of this study was to test the psychometric properties of the Spanish version of the Self Care of Heart Failure Index v.6.2 (SCHFI v.6.2). Methodology: Before testing its psychometric properties, the SCHFI v.6.2 was translated and adapted from its original English version into Spanish. Subsequently, we tested the instrument’s psychometric properties on a sample of 203 participants with HF. Descriptive statistics were used to analyze the sociodemographic and clinical variables, and to describe item responses. We tested the factorial validity of the SCHFI v.6.2 using confirmatory and exploratory factor analysis. Results: Confirmatory factor analysis (CFA) was performed using the our pre-existing models which resulted with poor fit indices. Thus, we performed exploratory factor analysis (EFA) on each of the SCHFI v.6.2 scales. Conclusion: The Spanish version of the SCHFI v.6.2. has good characteristics of factorial validity and can be used in clinical practice and research to measure self-care in patients with HF

    Interplay of Protein and DNA Structure Revealed in Simulations of the lac Operon

    Get PDF
    The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information. © 2013 Czapla et al
    corecore