20,987 research outputs found

    Financing schemes for residential, grid-connected PV solar systems in BCS, Mexico

    Full text link
    This article presents two proposals to spur the extensive adoption of grid-connected, residential, solar photovoltaic systems in the Mexican state of Baja California Sur. To this aim, electricity generation costs and subsidies were estimated first, together with time-of-generation avoided costs that could result from the implementation of such solar systems. An overview of financing mechanisms for solar and other renewable energies around the world is also presented followed by current mechanisms available in Mexico. The first proposal is centered around the operation of a solar energy service company that would receive the avoided cost of generation as compensation in return for sourcing, installing, and maintaining solar PV systems on residential users’ roofs. This would free up the residential user from any future electricity payments. The second proposal consists in the implementation of a feed-in tariff (FiT), currently unavailable in Mexico for residential users. The FiT could be funded from the avoided generation cost in conventional plants plus the corresponding savings from self-generation of electricity. Alternatively, the option of funding the FiT from small increases in electricity prices to all customers was also explored. Present value analyses suggest that both proposals are worthwhile pursuing in Baja California Sur

    Parameter constraints for high-energy models of colliding winds of massive stars: the case WR 147

    Full text link
    We explore the ability of high energy observations to constrain orbital parameters of long period massive binary systems by means of an inverse Compton model acting in colliding wind environments. This is particular relevant for (very) long period binaries where orbital parameters are often poorly known from conventional methods, as is the case e.g. for the Wolf-Rayet (WR) star binary system WR 147 where INTEGRAL and MAGIC upper limits on the high-energy emission have recently been presented. We conduct a parameter study of the set of free quantities describing the yet vaguely constrained geometry and respective effects on the non-thermal high-energy radiation from WR 147. The results are confronted with the recently obtained high-energy observations and with sensitivities of contemporaneous high-energy instruments like Fermi-LAT. For binaries with sufficient long periods, like WR 147, gamma-ray attenuation is unlikely to cause any distinctive features in the high-energy spectrum. This leaves the anisotropic inverse Compton scattering as the only process that reacts sensitively on the line-of-sight angle with respect to the orbital plane, and therefore allows the deduction of system parameters even from observations not covering a substantial part of the orbit. Provided that particle acceleration acts sufficiently effectively to allow the production of GeV photons through inverse Compton scattering, our analysis indicates a preference for WR 147 to possess a large inclination angle. Otherwise, for low inclination angles, electron acceleration is constrained to be less efficient as anticipated here.Comment: 33 pages, 9 figures; accepted by Ap

    Holographic model for heavy vector meson masses

    Full text link
    The experimentally observed spectra of heavy vector meson radial excitations show a dependence on two different energy parameters. One is associated with the quark mass and the other with the binding energy levels of the quark anti-quark pair. The first is present in the large mass of the first state while the other corresponds to the small mass splittings between radial excitations. In this article we show how to reproduce such a behavior with reasonable precision using a holographic model. In the dual picture, the large energy scale shows up from a bulk mass and the small scale comes from the position of anti-de Sitter (AdS) space where field correlators are calculated. The model determines the masses of four observed S-wave states of charmonium and six S-wave states of bottomonium with , 6.1 % rms error. In consistency with the physical picture, the large energy parameter is flavor dependent, while the small parameter, associated with quark anti-quark interaction is the same for charmonium and bottomonium states.Comment: In V5 we just added some clarifying explanations about the model. 5 tables, no figure. Version published in Europhysics Letter
    corecore