344 research outputs found

    Petroleum-hydrocarbons biodegradation by Pseudomonas strains isolated from hydrocarbon-contaminated soil

    Get PDF
    Many indigenous microorganisms in water and soil are capable of degrading hydrocarbon contaminants. In this study, two bacterial strains were isolated from a contaminated soil of a refinery of Arzew (Oran). The isolated strains were identified as Pseudomonas aeruginosa (P3) and Pseudomonas fluoresens (P4). The capability of these isolates to degrade petroleum was performed by measuring the optical density, colony forming unit counts (CFU/ml) and concentration of total petroleum hydrocarbons (TPH). Degradation of Isomerate by these isolates was analyzed by gas chromatography with flame ionization detector (FID). Results indicated that the isolates can use petroleum as carbon source. Isolates P3 has the highest capability of hydrocarbons degradation (80.86% of biodegradation).Keywords: Biodegradation, contaminated soil, Petroleum, Isomerate, Pseudomonas sp

    Antiresonance phase shift in strongly coupled cavity QED

    Full text link
    We investigate phase shifts in the strong coupling regime of single-atom cavity quantum electrodynamics (QED). On the light transmitted through the system, we observe a phase shift associated with an antiresonance and show that both its frequency and width depend solely on the atom, despite the strong coupling to the cavity. This shift is optically controllable and reaches 140 degrees - the largest ever reported for a single emitter. Our result offers a new technique for the characterization of complex integrated quantum circuits.Comment: 5 pages, 5 figure

    Des modèles biologiques à l'amélioration des plantes

    Get PDF

    Continuous parametric feedback cooling of a single atom in an optical cavity

    Full text link
    We demonstrate a new feedback algorithm to cool a single neutral atom trapped inside a standing-wave optical cavity. The algorithm is based on parametric modulation of the confining potential at twice the natural oscillation frequency of the atom, in combination with fast and repetitive atomic position measurements. The latter serve to continuously adjust the modulation phase to a value for which parametric excitation of the atomic motion is avoided. Cooling is limited by the measurement back action which decoheres the atomic motion after only a few oscillations. Nonetheless, applying this feedback scheme to a ~ 5 kHz oscillation mode increases the average storage time of a single atom in the cavity by a factor of 60 to more than 2 seconds. In contrast to previous feedback schemes, our algorithm is also capable of cooling a much faster ~ 500 kHz oscillation mode within just microseconds. This demonstrates that parametric cooling is a powerful technique that can be applied in all experiments where optical access is limited.Comment: 7 pages, 5 figure

    The Fringe Detection Laser Metrology for the GRAVITY Interferometer at the VLTI

    Full text link
    Interferometric measurements of optical path length differences of stars over large baselines can deliver extremely accurate astrometric data. The interferometer GRAVITY will simultaneously measure two objects in the field of view of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) and determine their angular separation to a precision of 10 micro arcseconds in only 5 minutes. To perform the astrometric measurement with such a high accuracy, the differential path length through the VLTI and the instrument has to be measured (and tracked since Earth's rotation will permanently change it) by a laser metrology to an even higher level of accuracy (corresponding to 1 nm in 3 minutes). Usually, heterodyne differential path techniques are used for nanometer precision measurements, but with these methods it is difficult to track the full beam size and to follow the light path up to the primary mirror of the telescope. Here, we present the preliminary design of a differential path metrology system, developed within the GRAVITY project. It measures the instrumental differential path over the full pupil size and up to the entrance pupil location. The differential phase is measured by detecting the laser fringe pattern both on the telescopes' secondary mirrors as well as after reflection at the primary mirror. Based on our proposed design we evaluate the phase measurement accuracy based on a full budget of possible statistical and systematic errors. We show that this metrology design fulfills the high precision requirement of GRAVITY.Comment: Proc. SPIE in pres

    PCR5 and Neutrosophic Probability in Target Identification

    Get PDF
    In this paper, we use PCR5 in order to fusion the information of two sources providing subjective probabilities of an event A to occur in the following form: chance that A occurs, indeterminate chance of occurrence of A, chance that A does not occur

    PCR5 and Neutrosophic Probability in Target Identification

    Get PDF
    In this paper, we use PCR5 in order to fusion the information of two sources providing subjective probabilities of an event A to occur in the following form: chance that A occurs, indeterminate chance of occurrence of A, chance that A does not occur

    Lattice-shifted nematic quantum critical point in FeSe1−xSxFeSe_{1−x}S_{x}

    Get PDF
    We report the evolution of nematic fluctuations in FeSe1−xSxFeSe_{1−x}S_{x} single crystals as a function of Sulfur content x across the nematic quantum critical point (QCP) xcx_{c} ~ 0.17 via Raman scattering. The Raman spectra in the B1gB_{1g} nematic channel consist of two components, but only the low energy one displays clear fingerprints of critical behavior and is attributed to itinerant carriers. Curie–Weiss analysis of the associated nematic susceptibility indicates a substantial effect of nemato-elastic coupling, which shifts the location of the nematic QCP. We argue that this lattice-induced shift likely explains the absence of any enhancement of the superconducting transition temperature at the QCP. The presence of two components in the nematic fluctuations spectrum is attributed to the dual aspect of electronic degrees of freedom in Hund’s metals, with both itinerant carriers and local moments contributing to the nematic susceptibility

    Lattice-Shifted Nematic Quantum Critical Point in FeSe1−x_{1-x}Sx_x

    Get PDF
    We report the evolution of nematic fluctuations in FeSe1−x_{1-x}Sx_x single crystals as a function of Sulfur content xx across the nematic quantum critical point (QCP) xc∼x_c\sim 0.17 via Raman scattering. The Raman spectra in the B1gB_{1g} nematic channel consist of two components, but only the low energy one displays clear fingerprints of critical behavior and is attributed to itinerant carriers. Curie-Weiss analysis of the associated nematic susceptibility indicates a substantial effect of nemato-elastic coupling which shifts the location of the nematic QCP. We argue that this lattice-induced shift likely explains the absence of any enhancement of the superconducting transition temperature at the QCP. The presence of two components in the nematic fluctuations spectrum is attributed to the dual aspect of electronic degrees of freedom in Hund's metals, with both itinerant carriers and local moments contributing to the nematic susceptibility.Comment: 10 pages, 5 figure
    • …
    corecore