4,211 research outputs found
Spectral and spatial observations of microwave spikes and zebra structure in the short radio burst of May 29, 2003
The unusual radio burst of May 29, 2003 connected with the M1.5 flare in AR
10368 has been analyzed. It was observed by the Solar Broadband Radio
Spectrometer (SBRS/Huairou station, Beijing) in the 5.2-7.6 GHz range. It
proved to be only the third case of a neat zebra structure appearing among all
observations at such high frequencies. Despite the short duration of the burst
(25 s), it provided a wealth of data for studying the superfine structure with
millisecond resolution (5 ms). We localize the site of emission sources in the
flare region, estimate plasma parameters in the generation sites, and suggest
applicable mechanisms for interpretating spikes and zebra-structure generation.
Positions of radio bursts were obtained by the Siberian Solar Radio Telescope
(SSRT) (5.7 GHz) and Nobeyama radioheliograph (NoRH) (17 GHz). The sources in
intensity gravitated to tops of short loops at 17 GHz, and to long loops at 5.7
GHz. Short pulses at 17 GHz (with a temporal resolution of 100 ms) are
registered in the R-polarized source over the N-magnetic polarity
(extraordinary mode). Dynamic spectra show that all the emission comprised
millisecond pulses (spikes) of 5-10 ms duration in the instantaneous band of 70
to 100 MHz, forming the superfine structure of different bursts, essentially in
the form of fast or slow-drift fibers and various zebra-structure stripes. Five
scales of zebra structures have been singled out. As the main mechanism for
generating spikes (as the initial emission) we suggest the coalescence of
plasma waves with whistlers in the pulse regime of interaction between
whistlers and ion-sound waves. In this case one can explain the appearance of
fibers and sporadic zebra-structure stripes exhibiting the frequency splitting.Comment: 11 pages, 5 figures, in press; A&A 201
Billiards with polynomial mixing rates
While many dynamical systems of mechanical origin, in particular billiards,
are strongly chaotic -- enjoy exponential mixing, the rates of mixing in many
other models are slow (algebraic, or polynomial). The dynamics in the latter
are intermittent between regular and chaotic, which makes them particularly
interesting in physical studies. However, mathematical methods for the analysis
of systems with slow mixing rates were developed just recently and are still
difficult to apply to realistic models. Here we reduce those methods to a
practical scheme that allows us to obtain a nearly optimal bound on mixing
rates. We demonstrate how the method works by applying it to several classes of
chaotic billiards with slow mixing as well as discuss a few examples where the
method, in its present form, fails.Comment: 39pages, 11 figue
Interaction of multiple particles with a solidification front : from compacted particle layer to particle trapping
The interaction of solidification fronts with objects such as particles,
droplets, cells, or bubbles is a phenomenon with many natural and technological
occurrences. For an object facing the front, it may yield various fates, from
trapping to rejection, with large implications regarding the solidification
pattern. However, whereas most situations involve multiple particles
interacting with each other and the front, attention has focused almost
exclusively on the interaction of a single, isolated object with the front.
Here we address experimentally the interaction of multiple particles with a
solidification front by performing solidification experiments of a monodisperse
particle suspension in a Hele-Shaw cell, with precise control of growth
conditions and real-time visualization. We evidence the growth of a particle
layer ahead of the front at a close-packing volume fraction and we document its
steady state value at various solidification velocities. We then extend single
particle models to the situation of multiple particles by taking into account
the additional force induced on an entering particle by viscous friction in the
compacted particle layer. By a force balance model, this provides an indirect
measure of the repelling mean thermomolecular pressure over a particle entering
the front. The presence of multiple particles is found to increase it following
a reduction of the thickness of the thin liquid film that separates particles
and front. We anticipate the findings reported here to provide a relevant basis
to understand many complex solidification situations in geophysics,
engineering, biology, or food engineering, where multiple objects interact with
the front and control the resulting solidification patterns.Comment: 13 pages, 10 figures, submitted to Langmui
Basic principles of hp Virtual Elements on quasiuniform meshes
In the present paper we initiate the study of Virtual Elements. We focus
on the case with uniform polynomial degree across the mesh and derive
theoretical convergence estimates that are explicit both in the mesh size
and in the polynomial degree in the case of finite Sobolev regularity.
Exponential convergence is proved in the case of analytic solutions. The
theoretical convergence results are validated in numerical experiments.
Finally, an initial study on the possible choice of local basis functions is
included
Beam propagation in a Randomly Inhomogeneous Medium
An integro-differential equation describing the angular distribution of beams
is analyzed for a medium with random inhomogeneities. Beams are trapped because
inhomogeneities give rise to wave localization at random locations and random
times. The expressions obtained for the mean square deviation from the initial
direction of beam propagation generalize the "3/2 law".Comment: 4 page
Deterministic Walks in Quenched Random Environments of Chaotic Maps
This paper concerns the propagation of particles through a quenched random
medium. In the one- and two-dimensional models considered, the local dynamics
is given by expanding circle maps and hyperbolic toral automorphisms,
respectively. The particle motion in both models is chaotic and found to
fluctuate about a linear drift. In the proper scaling limit, the cumulative
distribution function of the fluctuations converges to a Gaussian one with
system dependent variance while the density function shows no convergence to
any function. We have verified our analytical results using extreme precision
numerical computations.Comment: 18 pages, 9 figure
- …