99 research outputs found

    Urine macrophage migration inhibitory factor in pediatric systemic lupus erythematosus

    Get PDF
    We reported a series of ten patients with lupus nephritis (five patients in the relapse phase and five in the remission phase) and measured the macrophage migration inhibitory factor (MIF), an important pro-inflammatory cytokine with probable role in the pathogenesis of many inflammatory diseases, in their urine samples. MIF/creatinine (Cr) ratio directly correlated with disease activity and it does not have any significant difference between inactive disease and normal ones. We found that the urine MIF/Cr ratio not only differentiates active disease from inactive disease and normal ones but also correlates with the activity indices of renal pathology. © Clinical Rheumatology 2007

    Anatomic MR Imaging and Functional Diffusion Tensor Imaging of Peripheral Nerve Tumors and Tumorlike Conditions

    Get PDF
    ABSTRACT BACKGROUND AND PURPOSE: A number of benign and malignant peripheral nerve tumor and tumorlike conditions produce similar imaging features on conventional anatomic MR imaging. Functional MR imaging using DTI can increment the diagnostic performance in differentiation of these lesions. Our aim was to evaluate the role of 3T anatomic MR imaging and DTI in the characterization of peripheral nerve tumor and tumorlike conditions

    Measuring the Physiologic Properties of Oral Lesions Receiving Fractionated Photodynamic Therapy

    Full text link
    Photodynamic therapy (PDT) can treat superficial, early‐stage disease with minimal damage to underlying tissues and without cumulative dose‐limiting toxicity. Treatment efficacy is affected by disease physiologic properties, but these properties are not routinely measured. We assessed diffuse reflectance spectroscopy (DRS) for the noninvasive, contact measurement of tissue hemoglobin oxygen saturation (StO2) and total hemoglobin concentration ([tHb]) in the premalignant or superficial microinvasive oral lesions of patients treated with 5‐aminolevulinic acid (ALA)‐PDT. Patients were enrolled on a Phase 1 study of ALA‐PDT that evaluated fluences of 50, 100, 150 or 200 J cm−2 delivered at 100 mW cm−2. To test the feasibility of incorporating DRS measurements within the illumination period, studies were performed in patients who received fractionated (two‐part) illumination that included a dark interval of 90–180 s. Using DRS, tissue oxygenation at different depths within the lesion could also be assessed. DRS could be performed concurrently with contact measurements of photosensitizer levels by fluorescence spectroscopy, but a separate noncontact fluorescence spectroscopy system provided continuous assessment of photobleaching during illumination to greater tissue depths. Results establish that the integration of DRS into PDT of early‐stage oral disease is feasible, and motivates further studies to evaluate its predictive and dosimetric value.Diffuse reflectance spectroscopy with a contact probe was employed as part of a fluorescence and reflectance spectroscopy system to measure the tissue hemoglobin oxygen saturation and hemoglobin content of lesions of premalignant or early microinvasive cancer of the oral cavity. Studies demonstrate the feasibility of incorporating these measurements into treatment with fractionated (two‐part) photodynamic therapy (PDT) using 5‐aminolevulinic acid. Patient‐specific differences in physiologic parameters were detectable at baseline and at times during and after PDT. Photobleaching of photosensitizer was measured by its fluorescence. Results establish the utility of rationally designed spectroscopy probes toward personalized dosimetry in PDT of oral disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113767/1/php12475.pd

    Volumetry of low-contrast liver lesions with CT: Investigation of estimation uncertainties in a phantom study

    Get PDF
    Purpose: To evaluate the performance of lesion volumetry in hepatic CT as a function of various imaging acquisition parameters. Methods: An anthropomorphic abdominal phantom with removable liver inserts was designed for this study. Two liver inserts, each containing 19 synthetic lesions with varying diameter (6–40 mm), shape, contrast (10–65 HU), and both homogenous and mixed-density were designed to have background and lesion CT values corresponding to arterial and portal-venous phase imaging, respectively. The two phantoms were scanned using two commercial CT scanners (GE 750 HD and Siemens Biograph mCT) across a set of imaging protocols (four slice thicknesses, three effective mAs, two convolution kernels, two pitches). Two repeated scans were collected for each imaging protocol. All scans were analyzed using a matched-filter estimator for volume estimation, resulting in 6080 volume measurements across all of the synthetic lesions in the two liver phantoms. A subset of portal venous phase scans was also analyzed using a semi-automatic segmentation algorithm, resulting in about 900 additional volume measurements. Lesions associated with large measurement error (quantified by root mean square error) for most imaging protocols were considered not measurable by the volume estimation tools and excluded for the statistical analyses. Imaging protocols were grouped into distinct imaging conditions based on ANOVA analysis of factors for repeatability testing. Statistical analyses, including overall linearity analysis, grouped bias analysis with standard deviation evaluation, and repeatability analysis, were performed to assess the accuracy and precision of the liver lesion volume biomarker. Results: Lesions with lower contrast and size ≤10 mm were associated with higher measurement error and were excluded from further analysis. Lesion size, contrast, imaging slice thickness, dose, and scanner were found to be factors substantially influencing volume estimation. Twenty-four distinct repeatable imaging conditions were determined as protocols for each scanner with a fixed slice thickness and dose. For the matched-filter estimation approach, strong linearity was observed for all imaging data for lesions ≥20 mm. For the Siemens scanner with 50 mAs effective dose at 0.6 mm slice thickness, grouped bias was about −10%. For all other repeatable imaging conditions with both scanners, grouped biases were low (−3%–3%). There was a trend of increasing standard deviation with decreasing dose. For each fixed dose, the standard deviations were similar among the three larger slice thicknesses (1.25, 2.5, 5 mm for GE, 1.5, 3, 5 mm for Siemens). Repeatability coefficients ranged from about 8% to 75% and showed similar trend to grouped standard deviation. For the segmentation approach, the results led to similar conclusions for both lesion characteristic factors and imaging factors but with increasing magnitude in all the error metrics assessed. Conclusions: Results showed that liver lesion volumetry was strongly dependent on lesion size, contrast, acquisition dose, and their interactions. The overall performances were similar for images reconstructed with larger slice thicknesses, clinically used pitches, kernels, and doses. Conditions that yielded repeatable measurements were identified and they agreed with the Quantitative Imaging Biomarker Alliance’s (QIBA) profile requirements in general. The authors’ findings also suggest potential refinements to these guidelines for the tumor volume biomarker, especially for soft-tissue lesions

    The Rivermead behavioural memory test for children (RBMT-C)

    No full text
    No description supplie

    Major Salivary Gland Imaging

    No full text
    corecore