107 research outputs found

    P02-10 Abnormal emotional responses to pleasant and unpleasant visual stimuli in first episode schizophrenia: f-MRI investigation

    Get PDF
    Aims:Affective deficits (flat affect, a diminished expression of emotion, anhedonia, and lowered ability to experience pleasure) are very common in schizophrenia. In emotion feeling, the crucial role of the insula, rather than of the primary somatosensory cortices, strongly suggests that the neural substrate for emotions is not merely sensorial. It is more likely that the activation of the insula representation of the viscero-motor activity is responsible for feeling of disgust. A recent MRI study demonstrated specific left anterior insular volume reduction in chronic schizophrenia patients: sustainable is the suggestion that emotion of disgust or of taste may be related to the experience of pleasure, which probably is compromise in schizophrenics.We investigated fMRI brain activations in first episode schizophrenic subjects with negative symptoms and in healthy subjects elicited by pleasant and unpleasant visual stimuli.Method:Ten first-episode schizophrenic subjects with normal IQ were recruited from the psychiatric service "SMILE" of San Salvatore Hospital and 10 healthy volunteers matched for age and education were scanned during observation of pleasant and unpleasant visual stimuli. Functional images were acquired with a 1.5T MRI scanner. Blood oxygenation level dependent (BOLD) contrast was obtained using EPI T2* weighted images.Results:The most important result of the study was the demonstration that anterior insula was activated by the exposure to disgusting stimula in normal subjects but not in schizophrenic subjects.Conclusion:This failure of the neural systems used to support emotional attribution is consistent with pervasive problems in experiencing emotions by schizophrenics

    The Mediterranean island states : Malta and Cyprus

    Get PDF
    The 2004 European Union enlargement also included the Mediterranean island-states of Cyprus and Malta, two former British colonies and members of the British Commonwealth. The islands share a number of similarities but they are also dissimilar in uniquely distinct ways. The membership applications of both states initially presented the EU with a number of political difficulties. With respect to Cyprus, many member states would have preferred to see the island join the Union after the ‘Cyprus Problem’ had been settled. As for Malta, the island showed a very high degree of Euroskepticism. It froze its application in 1996 but reactivated it in 1998. Apart from this skepticism the island’s neutral status, enshrined in the Constitution could present insurmountable problems.peer-reviewe

    Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs

    No full text
    Aim: To develop biocompatible and bioresorbable negatively charged calcium phosphate nanoparticles (CaP-NPs) as an innovative therapeutic system for the delivery of bioactive molecules to the heart. Materials & methods: CaP-NPs were synthesized via a straightforward one-pot biomineralization-inspired protocol employing citrate as a stabilizing agent and regulator of crystal growth. CaP-NPs were administered to cardiac cells in vitro and effects of treatments were assessed. CaP-NPs were administered in vivo and delivery of microRNAs was evaluated. Results: CaP-NPs efficiently internalized into cardiomyocytes without promoting toxicity or interfering with any functional properties. CaP-NPs successfully encapsulated synthetic microRNAs, which were efficiently delivered into cardiac cells in vitro and in vivo. Conclusion: CaP-NPs are a safe and efficient drug-delivery system for potential therapeutic treatments of polarized cells such as cardiomyocytes

    Inhalable microparticles embedding calcium phosphate nanoparticles for heart targeting: The formulation experimental design

    Get PDF
    Inhalation of Calcium Phosphate nanoparticles (CaPs) has recently unmasked the potential of this nanomedicine for a respiratory lung-to-heart drug delivery targeting the myocardial cells. In this work, we investigated the development of a novel highly respirable dry powder embedding crystalline CaPs. Mannitol was selected as water soluble matrix excipient for constructing respirable dry microparticles by spray drying technique. A Quality by Design approach was applied for understanding the effect of the feed composition and spraying feed rate on typical quality attributes of inhalation powders. The in vitro aerodynamic behaviour of powders was evaluated using a medium resistance device. The inner structure and morphology of generated microparticles were also studied. The 1:4 ratio of CaPs/mannitol led to the generation of hollow microparticles, with the best aerodynamic performance. After microparticle dissolution, the released nanoparticles kept their original size

    MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo

    Get PDF
    RATIONALE: MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. OBJECTIVE: The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. METHODS AND RESULTS: We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal-regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. CONCLUSIONS: Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases

    Mitochondrial a kinase anchor proteins in cardiovascular health and disease: a review article on behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology

    Get PDF
    Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system

    Restoration of Altered MicroRNA Expression in the Ischemic Heart with Resveratrol

    Get PDF
    Resveratrol, a constituent of red wine, is important for cardioprotection. MicroRNAs are known regulators for genes involved in resveratrol-mediated cardiac remodeling and the regulatory pathway involving microRNA has not been studied so far.We explored the cardioprotection by resveratrol in ischemia/reperfusion model of rat and determined cardiac functions. miRNA profile was determined from isolated RNA using quantitative Real-time PCR based array. Systemic analyses of miRNA array and theirs targets were determined using a number of computational approaches.Cardioprotection by resveratrol and its derivative in ischemia/reperfusion [I/R] rat model was examined with miRNA expression profile. Unique expression pattern were found for each sample, particularly with resveratrol [pure compound] and longevinex [commercial resveratrol formulation] pretreated hearts. Longevinex and resveratrol pretreatment modulates the expression pattern of miRNAs close to the control level based on PCA analyses. Differential expression was observed in over 25 miRNAs, some of them, such as miR-21 were previously implicated in cardiac remodeling. The target genes for the differentially expressed miRNA include genes of various molecular function such as metal ion binding, sodium-potassium ion, transcription factors, which may play key role in reducing I/R injury.Rats pretreated with resveratrol for 3 weeks leads to significant cardioprotection against ischemia/reperfusion injury. A unique signature of miRNA profile is observed in control heart pretreated with resveratrol or longevinex. We have determined specific group of miRNA in heart that have altered during IR injuries. Most of those altered microRNA expressions modulated close to their basal level in resveratrol or longevinex treated I/R mice

    Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes

    Get PDF
    BACKGROUND: Two pertussis toxin sensitive G(i) proteins, G(i2) and G(i3), are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous G(i) isoforms are functionally distinct. To test for isoform-specific functions of G(i) proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC). METHODS: Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either Gα(i2) (Gα(i2) (-/-)) or Gα(i3) (Gα(i3) (-/-)). mRNA levels of Gα(i/o) isoforms and L-VDCC subunits were quantified by real-time PCR. Gα(i) and Ca(v)α(1) protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings. RESULTS: In cardiac tissue from Gα(i2) (-/-) mice, Gα(i3) mRNA and protein expression was upregulated to 187 ± 21% and 567 ± 59%, respectively. In Gα(i3) (-/-) mouse hearts, Gα(i2) mRNA (127 ± 5%) and protein (131 ± 10%) levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from Gα(i2) (-/-) mice was lowered (-7.9 ± 0.6 pA/pF, n = 11, p<0.05) compared to wild-type cells (-10.7 ± 0.5 pA/pF, n = 22), whereas it was increased in myocytes from Gα(i3) (-/-) mice (-14.3 ± 0.8 pA/pF, n = 14, p<0.05). Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of Gα(i2) (but not of Gα(i3)) and following treatment with pertussis toxin in Gα(i3) (-/-). The pore forming Ca(v)α(1) protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Ca(v)α(1) and Ca(v)β(2) subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking Gα(i2). CONCLUSION: Our data provide novel evidence for an isoform-specific modulation of L-VDCC by Gα(i) proteins. In particular, loss of Gα(i2) is reflected by alterations in channel kinetics and likely involves an impairment of the ERK1/2 signalling pathway

    Deep RNA Sequencing Reveals Novel Cardiac Transcriptomic Signatures for Physiological and Pathological Hypertrophy

    Get PDF
    Although both physiological hypertrophy (PHH) and pathological hypertrophy (PAH) of the heart have similar morphological appearances, only PAH leads to fatal heart failure. In the present study, we used RNA sequencing (RNA-Seq) to determine the transcriptomic signatures for both PHH and PAH. Approximately 13–20 million reads were obtained for both models, among which PAH showed more differentially expressed genes (DEGs) (2,041) than PHH (245). The expression of 417 genes was barely detectable in the normal heart but was suddenly activated in PAH. Among them, Foxm1 and Plk1 are of particular interest, since Ingenuity Pathway Analysis (IPA) using DEGs and upstream motif analysis showed that they are essential hub proteins that regulate the expression of downstream proteins associated with PAH. Meanwhile, 52 genes related to collagen, chemokines, and actin showed opposite expression patterns between PHH and PAH. MAZ-binding motifs were enriched in the upstream region of the participating genes. Alternative splicing (AS) of exon variants was also examined using RNA-Seq data for PAH and PHH. We found 317 and 196 exon inclusions and exon exclusions, respectively, for PAH, and 242 and 172 exon inclusions and exclusions, respectively for PHH. The AS pattern was mostly related to gains or losses of domains, changes in activity, and localization of the encoded proteins. The splicing variants of 8 genes (i.e., Fhl1, Rcan1, Ndrg2, Synpo, Ttll1, Cxxc5, Egfl7, and Tmpo) were experimentally confirmed. Multilateral pathway analysis showed that the patterns of quantitative (DEG) and qualitative (AS) changes differ depending on the type of pathway in PAH and PHH. One of the most significant changes in PHH is the severe downregulation of autoimmune pathways accompanied by significant AS. These findings revealed the unique transcriptomic signatures of PAH and PHH and also provided a more comprehensive understanding at both the quantitative and qualitative levels

    Transcriptional Activation of the Adenoviral Genome Is Mediated by Capsid Protein VI

    Get PDF
    Gene expression of DNA viruses requires nuclear import of the viral genome. Human Adenoviruses (Ads), like most DNA viruses, encode factors within early transcription units promoting their own gene expression and counteracting cellular antiviral defense mechanisms. The cellular transcriptional repressor Daxx prevents viral gene expression through the assembly of repressive chromatin remodeling complexes targeting incoming viral genomes. However, it has remained unclear how initial transcriptional activation of the adenoviral genome is achieved. Here we show that Daxx mediated repression of the immediate early Ad E1A promoter is efficiently counteracted by the capsid protein VI. This requires a conserved PPxY motif in protein VI. Capsid proteins from other DNA viruses were also shown to activate the Ad E1A promoter independent of Ad gene expression and support virus replication. Our results show how Ad entry is connected to transcriptional activation of their genome in the nucleus. Our data further suggest a common principle for genome activation of DNA viruses by counteracting Daxx related repressive mechanisms through virion proteins
    • …
    corecore