488 research outputs found

    Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach

    Get PDF
    Abstract. Assessment of landslide-triggering rainfall thresholds is useful for early warning in prone areas. In this paper, it is shown how stochastic rainfall models and hydrological and slope stability physically based models can be advantageously combined in a Monte Carlo simulation framework to generate virtually unlimited-length synthetic rainfall and related slope stability factor of safety data, exploiting the information contained in observed rainfall records and field-measurements of soil hydraulic and geotechnical parameters. The synthetic data set, dichotomized in triggering and non-triggering rainfall events, is analyzed by receiver operating characteristics (ROC) analysis to derive stochastic-input physically based thresholds that optimize the trade-off between correct and wrong predictions. Moreover, the specific modeling framework implemented in this work, based on hourly analysis, enables one to analyze the uncertainty related to variability of rainfall intensity within events and to past rainfall (antecedent rainfall). A specific focus is dedicated to the widely used power-law rainfall intensity–duration (I–D) thresholds. Results indicate that variability of intensity during rainfall events influences significantly rainfall intensity and duration associated with landslide triggering. Remarkably, when a time-variable rainfall-rate event is considered, the simulated triggering points may be separated with a very good approximation from the non-triggering ones by a I–D power-law equation, while a representation of rainfall as constant–intensity hyetographs globally leads to non-conservative results. This indicates that the I–D power-law equation is adequate to represent the triggering part due to transient infiltration produced by rainfall events of variable intensity and thus gives a physically based justification for this widely used threshold form, which provides results that are valid when landslide occurrence is mostly due to that part. These conditions are more likely to occur in hillslopes of low specific upslope contributing area, relatively high hydraulic conductivity and high critical wetness ratio. Otherwise, rainfall time history occurring before single rainfall events influences landslide triggering, determining whether a threshold based only on rainfall intensity and duration may be sufficient or it needs to be improved by the introduction of antecedent rainfall variables. Further analyses show that predictability of landslides decreases with soil depth, critical wetness ratio and the increase of vertical basal drainage (leakage) that occurs in the presence of a fractured bedrock

    Determination of folic acid using biosensors: a short review of recent progress

    Get PDF
    Folic acid (FA) is the synthetic surrogate of the essential B vitamin folate, alternatively named folacin, pteroylglutamic acid or vitamin B-9. FA is an electroactive compound that helps our body to create and keep our cells healthy: it acts as the main character in a variety of synthetic biological reactions such as the synthesis of purines, pyrimidine (thus being indirectly implied in DNA synthesis), fixing and methylation of DNA. Therefore, physiological folate deficiency may be responsible for severe degenerative conditions, including neural tube defects in developing embryos and megaloblastic anaemia at any age. Moreover, being a water-soluble molecule, it is constantly lost and has to be reintegrated daily; for this reason, FA supplements and food fortification are, nowadays, extremely diffused and well-established practices. Consequently, accurate, reliable and precise analytical techniques are needed to exactly determine FA concentration in various media. Thus, the aim of this review is to report on research papers of the past 5 years (2016-2020) dealing with rapid and low-cost electrochemical determination of FA in food or biological fluid samples

    Chemical efficiency of reactive microflows with heterogeneus catalysis: a lattice Boltzmann study

    Get PDF
    We investigate the effects of geometrical micro-irregularities on the conversion efficiency of reactive flows in narrow channels of millimetric size. Three-dimensional simulations, based upon a Lattice-Boltzmann-Lax-Wendroff code, indicate that periodic micro-barriers may have an appreciable effect on the effective reaction efficiency of the device. Once extrapolated to macroscopic scales, these effects can result in a sizeable increase of the overall reaction efficiency.Comment: 12 pages, 12 figure

    Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds

    Get PDF
    Abstract. Uncertainty in rainfall datasets and landslide inventories is known to have negative impacts on the assessment of landslide-triggering thresholds. In this paper, we perform a quantitative analysis of the impacts of uncertain knowledge of landslide initiation instants on the assessment of rainfall intensity–duration landslide early warning thresholds. The analysis is based on a synthetic database of rainfall and landslide information, generated by coupling a stochastic rainfall generator and a physically based hydrological and slope stability model, and is therefore error-free in terms of knowledge of triggering instants. This dataset is then perturbed according to hypothetical reporting scenarios that allow simulation of possible errors in landslide-triggering instants as retrieved from historical archives. The impact of these errors is analysed jointly using different criteria to single out rainfall events from a continuous series and two typical temporal aggregations of rainfall (hourly and daily). The analysis shows that the impacts of the above uncertainty sources can be significant, especially when errors exceed 1 day or the actual instants follow the erroneous ones. Errors generally lead to underestimated thresholds, i.e. lower than those that would be obtained from an error-free dataset. Potentially, the amount of the underestimation can be enough to induce an excessive number of false positives, hence limiting possible landslide mitigation benefits. Moreover, the uncertain knowledge of triggering rainfall limits the possibility to set up links between thresholds and physio-geographical factors

    Computing the Global Irradiation over the Plane of Photovoltaic Arrays: A Step-by-Step Methodology

    Get PDF
    The quality of solar resource data is critical for the economic and technical assessment of solar photovoltaic (PV) installations. Understanding uncertainty and managing weather-related risk are essential for successful planning and operating of solar electricity assets. The input information available for PV designers is usually restricted to 12 monthly mean values of global horizontal irradiation (GHI) and average temperature, which characterize solar climate of locations. However, for calculating the energy production of a photovoltaic system, the global irradiation over the plane of the PV array is necessary. For this reason, this book chapter presents a methodology to appropriately determine the global irradiation over the plane of photovoltaic arrays. The methodology describes step by step the necessary equations for processing the data. Examples with numerical results are included to better show the data processing

    Methodology for Sizing Hybrid Battery-Backed Power Generation Systems in Off-Grid Areas

    Get PDF
    In developing countries, rural electrification in areas with limited or no access to grid connection is one of the most challenging issues for governments. These areas are partially integrated with the electrical grid. This poor electricity distribution is mainly due to geographical inaccessibility, rugged terrains, lack of electrical infrastructure, and high required economic investment for installing large grid-connected power lines over long distances to provide electricity for regions with a low population. On the other hand, rapid depletion of fossil fuel resources on a global scale and progressive increase of energy demand and fuel price are other motives to reduce the reliance on fossil fuels. Hybrid renewable energy system (HRES) can be a suitable option for such remote areas. The objective of this chapter is to develop a methodology for sizing hybrid power generation systems (solar-diesel), battery-backed in non-interconnected zones, which minimizes the total cost and maximizes the reliability of supply using particle swarm optimization (PSO). The proposed methodology assists the sizing and designing process of an HRES for an off-grid area minimizing the cost of energy (COE) and maximizing the reliability of the system. Economic incentives offered by the Colombian government are considered in the model
    • …
    corecore