323 research outputs found
Incoherent matter-wave solitons
The dynamics of matter-wave solitons in Bose-Einstein condensates (BEC) is
considerably affected by the presence of a surrounding thermal cloud and by
condensate depletion during its evolution. We analyze these aspects of BEC
soliton dynamics, using time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory.
The condensate is initially prepared within a harmonic trap at finite
temperature, and solitonic behavior is studied by subsequently propagating the
TDHFB equations without confinement. Numerical results demonstrate the collapse
of the BEC via collisional emission of atom pairs into the thermal cloud,
resulting in splitting of the initial density into two solitonic structures
with opposite momentum. Each one of these solitary matter waves is a mixture of
condensed and noncondensed particles, constituting an analog of optical
random-phase solitons.Comment: 4 pages, 2 figures, new TDHFB result
Solitary Waves Bifurcated from Bloch Band Edges in Two-dimensional Periodic Media
Solitary waves bifurcated from edges of Bloch bands in two-dimensional
periodic media are determined both analytically and numerically in the context
of a two-dimensional nonlinear Schr\"odinger equation with a periodic
potential. Using multi-scale perturbation methods, envelope equations of
solitary waves near Bloch bands are analytically derived. These envelope
equations reveal that solitary waves can bifurcate from edges of Bloch bands
under either focusing or defocusing nonlinearity, depending on the signs of
second-order dispersion coefficients at the edge points. Interestingly, at edge
points with two linearly independent Bloch modes, the envelope equations lead
to a host of solitary wave structures including reduced-symmetry solitons,
dipole-array solitons, vortex-cell solitons, and so on -- many of which have
never been reported before. It is also shown analytically that the centers of
envelope solutions can only be positioned at four possible locations at or
between potential peaks. Numerically, families of these solitary waves are
directly computed both near and far away from band edges. Near the band edges,
the numerical solutions spread over many lattice sites, and they fully agree
with the analytical solutions obtained from envelope equations. Far away from
the band edges, solitary waves are strongly localized with intensity and phase
profiles characteristic of individual families.Comment: 23 pages, 15 figures. To appear in Phys. Rev.
Nonlinear directional coupler for polychromatic light
We demonstrate that nonlinear directional coupler with special bending of
waveguide axes can be used for all-optical switching of polychromatic light
with very broad spectrum covering all visible region. The bandwidth of
suggested device is enhanced five times compared to conventional couplers. Our
results suggest novel opportunities for creation of all-optical logical gates
and switches for polychromatic light with white-light and super-continuum
spectrum.Comment: 3 pages, 3 figure
Meta-Research: Large-scale language analysis of peer review reports
Peer review is often criticized for being flawed, subjective and biased, but research into peer review has been hindered by a lack of access to peer review reports. Here we report the results of a study in which text-analysis software was used to determine the linguistic characteristics of 472,449 peer review reports. A range of characteristics (including analytical tone, authenticity, clout, three measures of sentiment, and morality) were studied as a function of reviewer recommendation, area of research, type of peer review and reviewer gender. We found that reviewer recommendation had the biggest impact on the linguistic characteristics of reports, and that area of research, type of peer review and reviewer gender had little or no impact. The lack of influence of research area, type of review or reviewer gender on the linguistic characteristics is a sign of the robustness of peer review
Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media
We analytically demonstrate the existence of white light solitons in logarithmically saturable noninstantaneous nonlinear media. This incoherent soliton has elliptic Gaussian intensity profile, and elliptic Gaussian spatial correlation statistics. The existence curve of the soliton connects the strength of the nonlinearity, the spatial correlation distance as a function of frequency, and the characteristic width of the soliton. For this soliton to exist, the spatial correlation distance must be smaller for larger temporal frequency constituents of the beam
Anderson localization of partially-incoherent light
We study Anderson localization and propagation of partially-spatially
incoherent wavepackets in linear disordered potentials, motivated by the
insight that interference phenomena resulting from multiple scattering are
affected by the coherence of the waves. We find that localization is delayed by
incoherence: the more incoherent the waves are, the longer they diffusively
spread while propagating in the medium. However, if all the eigenmodes of the
system are exponentially localized (as in one- and two-dimensional disordered
systems), any partially-incoherent wavepacket eventually exhibits localization
with exponentially-decaying tails, after sufficiently long propagation
distances. Interestingly, we find that the asymptotic behavior of the
incoherent beam is similar to that of a single instantaneous coherent
realization of the beam.Comment: Revised version including a discussion on both spatially and
temporally incoherent light beams. Revised Figs. 2 and 3 and fixed typo
Reflection of a Lieb-Liniger wave packet from the hard-wall potential
Nonequilibrium dynamics of a Lieb-Liniger system in the presence of the
hard-wall potential is studied. We demonstrate that a time-dependent wave
function, which describes quantum dynamics of a Lieb-Liniger wave packet
comprised of N particles, can be found by solving an -dimensional Fourier
transform; this follows from the symmetry properties of the many-body
eigenstates in the presence of the hard-wall potential. The presented formalism
is employed to numerically calculate reflection of a few-body wave packet from
the hard wall for various interaction strengths and incident momenta.Comment: revised version, improved notation, Fig. 5 adde
Discrete interband mutual focusing in nonlinear photonic lattices
We study nonlinear coupling of mutually incoherent beams associated with
different Floquet-Bloch waves in a one-dimensional optically-induced photonic
lattice. We demonstrate experimentally how such interactions lead to asymmetric
mutual focusing and, for waves with opposite diffraction properties, to
simultaneous focusing and defocusing as well as discreteness-induced beam
localization and reshaping effects.Comment: 8 pages, 6 figures. To download the associated .avi movie, go to
http://www.rsphysse.anu.edu.au/~crr124/mut_focus
Dynamics of weakly interacting bosons in optical lattices with flux
Realization of strong synthetic magnetic fields in driven optical lattices has enabled implementation of topological bands in cold-atom setups. A milestone has been reached by a recent measurement of a finite Chern number based on the dynamics of incoherent bosonic atoms. The measurements of the quantum Hall effect in semiconductors are related to the Chern-number measurement in a cold-atom setup; however, the design and complexity of the two types of measurements are quite different. Motivated by these recent developments, we investigate the dynamics of weakly interacting incoherent bosons in a two-dimensional driven optical lattice exposed to an external force, which provides a direct probe of the Chern number. We consider a realistic driving protocol in the regime of high driving frequency and focus on the role of weak repulsive interactions. We find that interactions lead to the redistribution of atoms over topological bands both through the conversion of interaction energy into kinetic energy during the expansion of the atomic cloud and due to an additional heating. Remarkably, we observe that the moderate atomic repulsion facilitates the measurement by flattening the distribution of atoms in the quasimomentum space. Our results also show that weak interactions can suppress the contribution of some higher-order nontopological terms in favor of the topological part of the effective model
- …