378 research outputs found

    Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    Get PDF
    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and dis- charging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.Comment: arXiv admin note: text overlap with arXiv:1509.0400

    Angle-resolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe2As2

    Full text link
    We present a detailed comparison of the electronic structure of BaFe2As2 in its paramagnetic and antiferromagnetic (AFM) phases, through angle-resolved photoemission studies. Using different experimental geometries, we resolve the full elliptic shape of the electron pockets, including parts of dxy symmetry along its major axis that are usually missing. This allows us to define precisely how the hole and electron pockets are nested and how the different orbitals evolve at the transition. We conclude that the imperfect nesting between hole and electron pockets explains rather well the formation of gaps and residual metallic droplets in the AFM phase, provided the relative parity of the different bands is taken into account. Beyond this nesting picture, we observe shifts and splittings of numerous bands at the transition. We show that the splittings are surface sensitive and probably not a reliable signature of the magnetic order. On the other hand, the shifts indicate a significant redistribution of the orbital occupations at the transition, especially within the dxz/dyz system, which we discuss

    Coherent and incoherent bands in La and Rh doped Sr3Ir2O7

    Full text link
    In Sr2IrO4 and Sr3Ir2O7, correlations, magnetism and spin-orbit coupling compete on similar energy scales, creating a new context to study metal-insulator transitions (MIT). We use here Angle-Resolved photoemission to investigate the MIT as a function of hole and electron doping in Sr3Ir2O7, obtained respectively by Ir/Rh and Sr/La substitutions. We show that there is a clear reduction as a function of doping of the gap between a lower and upper band on both sides of the Fermi level, from 0.2eV to 0.05eV. Although these two bands have a counterpart in band structure calculations, they are characterized by a very different degree of coherence. The upper band exhibits clear quasiparticle peaks, while the lower band is very broad and loses weight as a function of doping. Moreover, their ARPES spectral weights obey different periodicities, reinforcing the idea of their different nature. We argue that a very similar situation occurs in Sr2IrO4 and conclude that the physics of the two families is essentially the same

    Temperature evolution of charge carrier density in the centre of the Brillouin zone of Fe(Se,Te) superconductor

    Full text link
    A characteristic feature of the electronic structure of iron-based supercon-ductors is the shift of experimental electronic bands in comparison to the results of calculations. The temperature dependence of the band structure for FeSe can manifest the mechanism of such shifts, but different studies give opposite directions for these shifts in the centre of the Brillouin zone. In this paper, we report downward shift of both dxz and dyz bands in Z point within the temperature range 20160 K. Together with the results of evolution of the electronic structure in A point, such shifts should lead to a break of parity between electron and hole charge carriers that can be interpreted as an increase of electron-carrier density with increasing temperature. © 2018 G.V. Kurdyumov Institute for Metal Physics of N.A.S. of Ukraine. All rights reserved.This study was supported by the Ukrainian–German grant from the MES of Ukraine (Project M/20-2017) and RFBR grant No. 16-05-00938 supported crystal growth experiments.The work of D.A.Ch. was supported by the program 211 of the Russian Federation Government (agreement No. 02.A03.21.0006) and by the Russian Government Program of Competitive Growth of Kazan Federal University

    Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2

    Full text link
    We present a detailed investigation of Ba(Fe0.65Ru0.35)2As2 by transport measurements and Angle Resolved photoemission spectroscopy. We observe that Fe and Ru orbitals hybridize to form a coherent electronic structure and that Ru does not induce doping. The number of holes and electrons, deduced from the area of the Fermi Surface pockets, are both about twice larger than in BaFe2As2. The contribution of both carriers to the transport is evidenced by a change of sign of the Hall coefficient with decreasing temperature. Fermi velocities increase significantly with respect to BaFe2As2, suggesting a significant reduction of correlation effects. This may be a key to understand the appearance of superconductivity at the expense of magnetism in undoped iron pnictides

    New electronic orderings observed in cobaltates under the influence of misfit periodicities

    Full text link
    We study with ARPES the electronic structure of CoO2 slabs, stacked with rock-salt (RS) layers exhibiting a different (misfit) periodicity. Fermi Surfaces (FS) in phases with different doping and/or periodicities reveal the influence of the RS potential on the electronic structure. We show that these RS potentials are well ordered, even in incommensurate phases, where STM images reveal broad stripes with width as large as 80\AA. The anomalous evolution of the FS area at low dopings is consistent with the localization of a fraction of the electrons. We propose that this is a new form of electronic ordering, induced by the potential of the stacked layers (RS or Na in NaxCoO2) when the FS becomes smaller than the Brillouin Zone of the stacked structure

    Fermi Surface reconstruction in the CDW state of CeTe3 observed by photoemission

    Full text link
    CeTe3 is a layered compound where an incommensurate Charge Density Wave (CDW) opens a large gap (400 meV) in optimally nested regions of the Fermi Surface (FS), whereas other sections with poorer nesting remain ungapped. Through Angle-Resolved Photoemission, we identify bands backfolded according to the CDW periodicity. They define FS pockets formed by the intersection of the original FS and its CDW replica. Such pockets illustrate very directly the role of nesting in the CDW formation but they could not be detected so far in a CDW system. We address the reasons for the weak intensity of the folded bands, by comparing different foldings coexisting in CeTe3
    corecore