747 research outputs found

    A Fast Algorithm for Computing the p-Curvature

    Get PDF
    We design an algorithm for computing the pp-curvature of a differential system in positive characteristic pp. For a system of dimension rr with coefficients of degree at most dd, its complexity is \softO (p d r^\omega) operations in the ground field (where ω\omega denotes the exponent of matrix multiplication), whereas the size of the output is about pdr2p d r^2. Our algorithm is then quasi-optimal assuming that matrix multiplication is (\emph{i.e.} ω=2\omega = 2). The main theoretical input we are using is the existence of a well-suited ring of series with divided powers for which an analogue of the Cauchy--Lipschitz Theorem holds.Comment: ISSAC 2015, Jul 2015, Bath, United Kingdo

    Asymptotic Fixed-Speed Reduced Dynamics for Kinetic Equations in Swarming

    Get PDF
    We perform an asymptotic analysis of general particle systems arising in collective behavior in the limit of large self-propulsion and friction forces. These asymptotics impose a fixed speed in the limit, and thus a reduction of the dynamics to a sphere in the velocity variables. The limit models are obtained by averaging with respect to the fast dynamics. We can include all typical effects in the applications: short-range repulsion, long-range attraction, and alignment. For instance, we can rigorously show that the Cucker-Smale model is reduced to the Vicsek model without noise in this asymptotic limit. Finally, a formal expansion based on the reduced dynamics allows us to treat the case of diffusion. This technique follows closely the gyroaverage method used when studying the magnetic confinement of charged particles. The main new mathematical difficulty is to deal with measure solutions in this expansion procedure

    On the harmonic Boltzmannian waves in laser-plasma interaction

    Get PDF
    We study the permanent regimes of the reduced Vlasov-Maxwell system for laser-plasma interaction. A non-relativistic and two different relativistic models are investigated. We prove the existence of solutions where the distribution function is Boltzmannian and the electromagnetic variables are time-harmonic and circularly polarized

    The Ising model and Special Geometries

    Full text link
    We show that the globally nilpotent G-operators corresponding to the factors of the linear differential operators annihilating the multifold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model (n6n \le 6) are homomorphic to their adjoint. This property of being self-adjoint up to operator homomorphisms, is equivalent to the fact that their symmetric square, or their exterior square, have rational solutions. The differential Galois groups are in the special orthogonal, or symplectic, groups. This self-adjoint (up to operator equivalence) property means that the factor operators we already know to be Derived from Geometry, are special globally nilpotent operators: they correspond to "Special Geometries". Beyond the small order factor operators (occurring in the linear differential operators associated with χ(5) \chi^{(5)} and χ(6) \chi^{(6)}), and, in particular, those associated with modular forms, we focus on the quite large order-twelve and order-23 operators. We show that the order-twelve operator has an exterior square which annihilates a rational solution. Then, its differential Galois group is in the symplectic group Sp(12,C) Sp(12, \mathbb{C}). The order-23 operator is shown to factorize in an order-two operator and an order-21 operator. The symmetric square of this order-21 operator has a rational solution. Its differential Galois group is, thus, in the orthogonal group SO(21,C) SO(21, \mathbb{C}).Comment: 33 page

    Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity

    Full text link
    We show that the n-fold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the "Ising class", or n-fold integrals from enumerative combinatorics, like lattice Green functions, are actually diagonals of rational functions. As a consequence, the power series expansions of these solutions of linear differential equations "Derived From Geometry" are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. Besides, in a more enumerative combinatorics context, we show that generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We give a large set of results illustrating the fact that the unique analytical solution of Calabi-Yau ODEs, and more generally of MUM ODEs, is, almost always, diagonal of rational functions. We revisit Christol's conjecture that globally bounded series of G-operators are necessarily diagonals of rational functions. We provide a large set of examples of globally bounded series, or series with integer coefficients, associated with modular forms, or Hadamard product of modular forms, or associated with Calabi-Yau ODEs, underlying the concept of modularity. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity (in particular integrality of the Taylor coefficients of mirror map), introducing new representations of Yukawa couplings.Comment: 100 page

    Ising n-fold integrals as diagonals of rational functions and integrality of series expansions

    Full text link
    We show that the n-fold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the "Ising class", or n-fold integrals from enumerative combinatorics, like lattice Green functions, correspond to a distinguished class of function generalising algebraic functions: they are actually diagonals of rational functions. As a consequence, the power series expansions of the, analytic at x=0, solutions of these linear differential equations "Derived From Geometry" are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. We also give several results showing that the unique analytical solution of Calabi-Yau ODEs, and, more generally, Picard-Fuchs linear ODEs, with solutions of maximal weights, are always diagonal of rational functions. Besides, in a more enumerative combinatorics context, generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity of ODEs.Comment: This paper is the short version of the larger (100 pages) version, available as arXiv:1211.6031 , where all the detailed proofs are given and where a much larger set of examples is displaye

    Line-Defect Waveguides in Hexagon-Hole type Photonic Crystal Slabs: Design and Fabrication using Focused Ion Beam Technology

    Get PDF
    Photonic-crystal slabs (PCS) patterned with a 2D triangular-lattice having hexagonal holes rotated with respect to their symmetry axis can provide a larger bandgap than similar slabs with circular holes. A step forward towards integrated optical devices is introducing line ‘defects’ in PCS, the goal being the achievement of single-mode waveguiding over a frequency range as large as possible, inside the gap. We present the design for defect waveguides with reduced width and a novel fabrication technique, which is an integration of optical lithography with focused ion beam (FIB) high-resolution etching. This technique allows a good alignment between a line ‘defect’ and conventional ridge waveguides

    High order Fuchsian equations for the square lattice Ising model: χ(6)\chi^{(6)}

    Full text link
    This paper deals with χ~(6)\tilde{\chi}^{(6)}, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for χ~(6)\tilde{\chi}^{(6)}. The length of the series is sufficient to produce the corresponding Fuchsian linear differential equation (modulo a prime). We obtain the Fuchsian linear differential equation that annihilates the "depleted" series Φ(6)=χ~(6)23χ~(4)+245χ~(2)\Phi^{(6)}=\tilde{\chi}^{(6)} - {2 \over 3} \tilde{\chi}^{(4)} + {2 \over 45} \tilde{\chi}^{(2)}. The factorization of the corresponding differential operator is performed using a method of factorization modulo a prime introduced in a previous paper. The "depleted" differential operator is shown to have a structure similar to the corresponding operator for χ~(5)\tilde{\chi}^{(5)}. It splits into factors of smaller orders, with the left-most factor of order six being equivalent to the symmetric fifth power of the linear differential operator corresponding to the elliptic integral EE. The right-most factor has a direct sum structure, and using series calculated modulo several primes, all the factors in the direct sum have been reconstructed in exact arithmetics.Comment: 23 page
    corecore