207 research outputs found

    Gauge Independence of IR singularities in Non-Commutative QFT - and Interpolating Gauges

    Full text link
    IR divergences of a non-commutative U(1) Maxwell theory are discussed at the one-loop level using an interpolating gauge to show that quadratic IR divergences are independent not only from a covariant gauge fixing but also independent from an axial gauge fixing.Comment: 11 pages, 2 figures, v1 minor correction

    Superstrings from Hamiltonian Reduction

    Get PDF
    In any string theory there is a hidden, twisted superconformal symmetry algebra, part of which is made up by the BRST current and the anti-ghost. We investigate how this algebra can be systematically constructed for strings with N ⁣− ⁣2N\!-\!2 supersymmetries, via quantum Hamiltonian reduction of the Lie superalgebras osp(N∣2)osp(N|2). The motivation is to understand how one could systematically construct generalized string theories from superalgebras. We also briefly discuss the BRST algebra of the topological string, which is a doubly twisted N ⁣= ⁣4N\!=\!4 superconformal algebra.Comment: 32p, LaTeX, CERN-TH.7379/9

    A Generalization of Slavnov-Extended Non-Commutative Gauge Theories

    Get PDF
    We consider a non-commutative U(1) gauge theory in 4 dimensions with a modified Slavnov term which looks similar to the 3-dimensional BF model. In choosing a space-like axial gauge fixing we find a new vector supersymmetry which is used to show that the model is free of UV/IR mixing problems, just as in the previously discussed model in arXiv:hep-th/0604154. Finally, we present generalizations of our proposed model to higher dimensions.Comment: 25 pages, no figures; v2 minor correction

    Strings from N=2N=2 Gauged Wess-Zumino-Witten Models

    Get PDF
    We present an algebraic approach to string theory. An embedding of sl(2∣1)sl(2|1) in a super Lie algebra together with a grading on the Lie algebra determines a nilpotent subalgebra of the super Lie algebra. Chirally gauging this subalgebra in the corresponding Wess-Zumino-Witten model, breaks the affine symmetry of the Wess-Zumino-Witten model to some extension of the N=2N=2 superconformal algebra. The extension is completely determined by the sl(2∣1)sl(2|1) embedding. The realization of the superconformal algebra is determined by the grading. For a particular choice of grading, one obtains in this way, after twisting, the BRST structure of a string theory. We classify all embeddings of sl(2∣1)sl(2|1) into Lie super algebras and give a detailed account of the branching of the adjoint representation. This provides an exhaustive classification and characterization of both all extended N=2N=2 superconformal algebras and all string theories which can be obtained in this way.Comment: 50 pages, LaTe

    A Vector Supersymmetry in Noncommutative U(1) Gauge Theory with the Slavnov Term

    Get PDF
    We consider noncommutative U(1) gauge theory with the additional term, involving a scalar field lambda, introduced by Slavnov in order to cure the infrared problem. we show that this theory, with an appropriate space-like axial gauge-fixing, wxhibits a linear vector supersymmetry similar to the one present in the 2-dimensional BF model. This vector supersymmetry implies that all loop corrections are independent of the λAA\lambda AA-vertex and thereby explains why Slavnov found a finite model for the same gauge-fixing.Comment: 18 pages, 3 figures; v2 Acknowledgments adde

    On the Lagrangian Realization of Non-Critical W{\cal W}-Strings

    Get PDF
    A large class of non-critical string theories with extended worldsheet gauge symmetry are described by two coupled, gauged Wess-Zumino-Witten Models. We give a detailed analysis of the gauge invariant action and in particular the gauge fixing procedure and the resulting BRST symmetries. The results are applied to the example of W3{\cal W}_3 strings.Comment: 19 pages, LaTeX (REVTEX macro's

    On the symmetries of BF models and their relation with gravity

    Get PDF
    The perturbative finiteness of various topological models (e.g. BF models) has its origin in an extra symmetry of the gauge-fixed action, the so-called vector supersymmetry. Since an invariance of this type also exists for gravity and since gravity is closely related to certain BF models, vector supersymmetry should also be useful for tackling various aspects of quantum gravity. With this motivation and goal in mind, we first extend vector supersymmetry of BF models to generic manifolds by incorporating it into the BRST symmetry within the Batalin-Vilkovisky framework. Thereafter, we address the relationship between gravity and BF models, in particular for three-dimensional space-time.Comment: 29 page

    Addressing Grand Challenges in Earth Observation Science: The Earth Observation Data Centre for Water Resources Monitoring

    Get PDF
    Earth observation is entering a new era where the increasing availability of free and open global satellite data sets combined with the computing power offered by modern information technologies opens up the possibility to process high-resolution data sets at global scale and short repeat intervals in a fully automatic fashion. This will not only boost the availability of higher level earth observation data in purely quantitative terms, but can also be expected to trigger a step change in the quality and usability of earth observation data. However, the technical, scientific, and organisational challenges that need to be overcome to arrive at this point are significant. First of all, Petabyte-scale data centres are needed for storing and processing complete satellite data records. Second, innovative processing chains that allow fully automatic processing of the satellite data from the raw sensor records to higher-level geophysical products need to be developed. Last but not least, new models of cooperation between public and private actors need to be found in order to live up to the first two challenges. This paper offers a discussion of how the Earth Observation Data Centre for Water Resources Monitoring (EODC) – a catalyser for an open and international cooperation of public and private organisations – will address these three grand challenges with the aim to foster the use of earth observation for monitoring of global water resources

    Structural Anisotropy in Polar Fluids Subjected to Periodic Boundary Conditions

    Get PDF
    A heuristic model based on dielectric continuum theory for the long-range solvation free energy of a dipolar system possessing periodic boundary conditions (PBCs) is presented. The predictions of the model are compared to simulation results for Stockmayer fluids simulated using three different cell geometries. The boundary effects induced by the PBCs are shown to lead to anisotropies in the apparent dielectric constant and the long-range solvation free energy of as much as 50%. However, the sum of all of the anisotropic energy contributions yields a value that is very close to the isotropic one derived from dielectric continuum theory, leading to a total system energy close to the dielectric value. It is finally shown that the leading-order contribution to the energetic and structural anisotropy is significantly smaller in the noncubic simulation cell geometries compared to when using a cubic simulation cell
    • 

    corecore