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Abstract

In any string theory there is a hidden, twisted superconformal symmetry algebra,

part of which is made up by the BRST current and the anti-ghost. We investigate

how this algebra can be systematically constructed for strings with N�2 super-

symmetries, via quantum Hamiltonian reduction of the Lie superalgebras osp(N j2).

The motivation is to understand how one could systematically construct generalized

string theories from superalgebras. We also brie
y discuss the BRST algebra of the

topological string, which is a doubly twisted N=4 superconformal algebra.
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1 Introduction

It is known that the BRST structure of (critical and non-critical) bosonic strings can be

characterized in terms of a twisted N=2 superconformal algebra [1], that of superstrings

in terms of an N = 3 algebra and that of Wn-strings in terms of N = 2 Wn-algebras [2],

etc. In terms of a given superconformal algebra, the nilpotent BRST operator is nothing

but one of the supercharges,

QBRST � G
+

0 =
I
dz (cT + : : :) ; (1.1)

such that the fundamental relation T (z) = fQBRST ; b(z)g is part of an N=2 sub-algebra

(the anti-ghost is just the conjugate supercurrent, G�(z) = b(z)). The above expression

represents a very speci�c realization of such superconformal algebras, and it was shown

in [2, 4] that for ordinary bosonic and Wn-strings, this kind of realization can indeed be

systematically obtained via quantum Hamiltonian reduction from WZW models based

on s`(njn�1). (Note that there exists a di�erent, complementary way of characterizing

the BRST structure in terms of superconformal algebras, initiated in [3]. These BRST

algebras seem to be much harder to obtain from Hamiltonian reduction, if at this is all

possible, because they involve bosonization of the �; 
 systems.)

Embedding of string theories into WZWmodels allows to analyze their BRST structure

by Lie algebraic methods, and more importantly, opens up the possibility of classifying

string theories in terms of superalgebras. Since the Hamiltonian reduction of s`(2j1)
yields the ordinary bosonic string, one may expect that a very large class extensions of the

bosonic string are determined by the embeddings of s`(2j1) into arbitrary superalgebras.

However, what reallymakes a string model is certainly not just any superconformal algebra

obtained in this way: in order to de�ne a string theory, one also must require a particular

realization of the algebra, namely one where one of the supercharges has the form1 (1.1).

The existence of such realizations is a priori not obvious, and it is the purpose of this

paper to shed some light on this problem of constructing general string BRST opera-

tors from superalgebras. We will primarily focus on how superstrings with N�2 super-

symmetries can be obtained via quantum Hamiltonian reduction from the superalgebras

1Note that G+(z) will in general explicitly contain the Liouville �eld or some matter �elds, so that it

is not really covariant. However, since these �elds appear only in total derivative terms, this is irrelevant

for the classi�cation of BRST operators.
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osp(N j2). It turns out that in comparison to Wn-strings (associated with s`(njn�1)),

the situation is much more involved here, in that various complications occur. To our

knowledge, some of these complications in the Hamiltonian reduction and their resolution

have so far not been treated in the literature.

We will start in section 2 with the ordinary N =1 superstring, for which we will be

most explicit since it already displays the relevant features. In the following section, we

will then consider the Hamiltonian reduction leading to the N = 2 string, after having

�rst constructed its twisted N=4 symmetry algebra (such an algebra was constructed so

far only for the critical N =2 string [5, 6]). In section 4 we discuss the generalization to

arbitrary N -extended superstrings, and in section 5 we will consider topological strings.

Even though we �nd an analogous, but now doubly twisted N =4 superconformal sym-

metry in these theories, we did not quite succeed to obtain the relevant realization of this

algebra from Hamiltonian reduction.

2 N=1 Superstring

The idea of quantum Hamiltonian reduction is to �rst choose an embedding of s`(2) into

a given Lie (super-)algebra and an element of the Cartan sub-algebra (that necessarily

contains the Cartan generator of the s`(2)). This Cartan element will give rise to a

splitting of the Lie algebra into sub-algebras with positive, zero and negative grades.

Imposing �rst-class constraints on the negative-grade part induces a gauge symmetry of

the associated WZW-model. In particular, one always constrains the lowering operator

of the s`(2) to be a constant, in order to ensure the existence of a Virasoro generator.

The other non-trivial elements of the BRST cohomology of this gauged WZW-model then

form an extension of the Virasoro algebra [7].

Before applying these ideas to osp(3j2), we �rst give a brief description of its cur-

rent algebra (the general conventions for osp(N j2) current algebras are summarized in

appendix A). The bosonic part of osp(3j2) consists of an s`(2) current algebra at level �

and an so(3) current algebra at level �2�. It is convenient for our purposes to choose a

basis of the so(3) sub-algebra by J� = (J1 � iJ2), J0 = iJ3. The fermionic part trans-

forms according to the spin-1
2
representation of s`(2) and as a vector under so(3). We will

denote the fermionic currents by jab with a 2 f+;�g and b 2 f+; 0;�g. The generators
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of the Lie superalgebra are denoted by e�; e0, t
J
�; t

J
0
and tab.

A natural choice for the s`(2) embedding is to take just the bosonic s`(2) sub-algebra

of osp(3j2). It was shown previously [8] that such a quantum Hamiltonian reduction

of osp(N j2) gives rise to the standard N -extended superconformal algebra, if one uses

the gradation corresponding to the Cartan element E0. Taking over the general line of

argumentation of [2], we expect that di�erent choices of gradations will result in di�erent

realizations of the same extended Virasoro algebra. Indeed we will �nd that if we choose

instead the Cartan elementE0+J0 for the gradation, we precisely obtain the non-standard

realization of the N=3 superconformal algebra that represents the BRST algebra of the

N=1 superstring.

There are, however, di�erences and new features as compared to the s`(njn� 1)-

reductions, which describe the Wn strings. First, in [2, 4] the possibility of having var-

ious, genuinely di�erent free-�eld realizations of the same superconformal algebra was

attributed to the possibility of gauging di�erent Borel subgroups, which for s`(njn�1)

happens to be equivalent to choosing di�erent gradations. However, in the present con-

text of osp(N j2), it appears that the realizations we are after cannot be obtained by

simply gauging di�erent Borel subgroups. In other words, we �nd that choosing di�erent

gradations is a more general method than gauging di�erent Borel sub-algebras.

In addition, the superconformal algebras that one obtains by Hamiltonian reduction

will always be non-linearly [9] generated, whereas the twisted N=3 algebra of the N=1

string (and similarly the twisted N =4 algebra of the N =2 string discussed in chapter

3) is linear. This is because the supercharges that represent the BRST-current and the

anti-ghost are supposed to be nilpotent, and this is only the case for the linear form of

the N -extended superconformal algebras. Moreover, the numbers of the free fermions

that we get from the reduction will a priori be less than the number of the �elds of the

string model. Therefore we have to adjoin additional fermions in a rather special way to

linearize the algebra and to obtain the proper free �eld realization that can be attributed

to the string theory; this is essentially the inverse of the fermion-decoupling procedure of

[10]. We will expand on these points later on.

Adopting the Cartan element E0 + J0, we have the following grades of the currents:
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E+ E0 E� J+ J0 J� j++ j+0 j+� j�+ j�0 j��

E0 1 0 �1 0 0 0 1=2 1=2 1=2 �1=2 �1=2 �1=2
J0 0 0 0 1 0 �1 1 0 �1 1 0 �1

E0 + J0 1 0 �1 1 0 �1 3=2 1=2 �1=2 1=2 �1=2 �3=2

A consistent set of �rst-class constraints is given by �� = 0, where

��E = E
� � �

2
;

��J = J
� � �;

�+� = j
+� �  ;

��0 = j
�0 � � � � �;

��� = j
��

: (2.1)

The OPE's for the auxiliary �elds are

 (z) � (w) = � 1

(z � w)
; � (z)� (w) = �1

8

�

(z � w)
; �(z)��(w) =

1

(z � w)
: (2.2)

The auxiliary �eld � is necessary in order to make the constraints �rst-class. On the other

hand, the origin of the other auxiliary �elds  , � , �, �� is quite di�erent (the latter does

not even appear in the constraints). To see this, note that (2.1) would still form a closed

set of �rst class constraints even when setting  , � , and � to zero. However, this would

rather correspond to a di�erent s`(2) embedding and thus would lead, as a consequence,

to a di�erent extended superconformal algebra.

But we really want the embedding being given by E+ ; E0 ; E�. From general theo-

rems about quantum Hamiltonian reduction, we know that to each highest weight of the

embedded s`(2), there corresponds a generator of the extended Virasoro algebra. Hence

we cannot constrain J� and j+� to be zero and simultaneously have that these �elds

survive in the highest weight gauge. The resolution of this problem becomes more clear

by writing down a Lagrangian for the constrained WZW-model of osp(3j2):

S = SWZW [g] +
1

2�

Z
d
2
z str( �A�) � 1

2�

Z
d
2
z (���@�+ � �@ )� 2

��

Z
d
2
z � �@� (2.3)

It is gauge invariant provided the �elds transform according to

�� =
�

2
�
+0
;
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� = �
+0
� ; � � = 2�+� ;

�� = 0 ; ��� = 2�+J + �
+0 � ;

� �A = �@� + [ �A; �] ; �J = @J + [J; �] : (2.4)

Here, �A is the gauge �eld that arises as Lagrange multiplier for imposing the constraints,

J = �

2
@gg�1 denotes the currents of the WZW-model and � is the gauge parameter

which takes values only in the positively graded part of osp(3j2). Several features of this
lagrangian are remarkable. First we see that despite we do not need the �eld �� for writing

down the constraints it is nessecary for having gauge invariance. Note also that  , which

corresponds to the the highest weight j+�, transforms non-trivially. Nevertheless, in the

highest weight gauge we have �+0 = � 2

�
� and therefore � = � 2

�
��, which shows that  

is indeed non-zero and corresponds to a generator of the N=3 algebra.

To quantize the action (2.3), we use the BRST-formalism and introduce ghosts and

anti-ghosts as follows:

C = ce+ + c
J
t
J
+ + 


�+
t�+ + 


+0
t+0 + 


++
t++ ;

B = be� + b
J
t
J
� + �

+�
t+� + �

�0
t�0 + �

��
t�� ; (2.5)

The BRST-transformations are:

sB = D ; s �A = ��@C � [ �A;C] ; (2.6)

We impose the light-cone gauge by adding to (2.3)

Sg:f: = s
1

2�

Z
d
2
z B �A =

1

2�

Z
d
2
z (D �A +B �@C + �AfB;Cg) : (2.7)

From this we can read o� the OPE's for the ghosts

b(z)c(w) = �bJ(z)cJ(w) = ��+�(z)
�+(w) = �
��(z)
++(w) = ;

2��0(z)
+0(w) =
1

(z �w)
: (2.8)

Integrating out the gauge �eld then yields

D = sB = �̂ (2.9)

where �̂ denotes the substitution of J by Ĵ = J +Jgh and Jgh =
1

2
fB;Cg . Explicitly, the

ghost currents are

E
+

gh = �1

2
�
+�


++

;
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E
0

gh = �1

2
bc+

1

4
�
+�


�+ +

1

2
�
�0


+0 +

1

4
�
��


++

;

E
�
gh =

1

2
�
��


�+

;

J
+

gh = �1

2
�
�0


++

;

J
0

gh = �1

2
b
J
c
J � 1

4
�
+�


�+ +

1

2
�
�0


+0
;

J
�
gh = �1

2
�
��


+0

j
+0

gh =
1

4
b
J


++ � 1

4
�
+�
c
J +

1

2
�
�0
c ; (2.10)

j
+�
gh = �1

2
b
J


+0 +

1

2
�
��
c ;

j
�+
gh =

1

2
b


++ +
1

2
�
�0
c
J
;

j
�0
gh =

1

4
b


+0 +
1

4
b
J


�+ � 1

4
�
��
c
J
;

Eq. (2.9) shows that the anti-ghosts and the constraint currents form BRST doublets and

thus decouple from the BRST cohomology. The ghost contributions to the total currents Ĵ

modify the central extensions of the algebra. In particular, we have the following modi�ed

central terms for the Cartan currents:

Ê
0(z)Ê0(w) =

(1 + 2�)

16

1

(z � w)2
;

Ĵ
0(z)Ĵ0(w) = �(1 + 2�)

16

1

(z � w)2
; (2.11)

It is now straightforward to write down the BRST operator:

QBRST =
1

2�i

I
d
2
z

h
c(E� +

1

2
E
�
gh �

�

2
)� c

J(J� +
1

2
J
�
gh � �) + 


�+(j+� +

+
1

2
j
+�
gh �  )� 2
+0(j�0 +

1

2
j
�0
gh � � � 1

4
� �) � 


++
j
��

i
; (2.12)

which can be split it into the three following pieces:

Q0 =
1

2�i

I
d
2
z (��

2
c+ c

J
�) ;

Q1 =
1

2�i

I
d
2
z (�
�+ + 2
+0� +

1

2
2
+0 � �) ;

Q2 =
1

2�i

I
d
2
z

h
c(E� +

1

2
E
�
gh)� c

J(J� +
1

2
J
�
gh) + 


�+(j+� +
1

2
j
+�
gh )�

2
+0(j�0 +
1

2
j
�0
gh )� 


++
j
��

i
; (2.13)
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where Q2

0
= Q2

2
= 0 and Q2

1
+ fQ0;Q2g = 0. This shows that the techniques developed

in [7] can be fully taken over. In particular, the spectral sequence techniques apply and

we can de�ne the quantum Miura transformation as the truncation of the generators of

the cohomology of (2.12) to the zero-grade �elds, which are given by the the Cartan

generators of osp(3j2) and the auxiliary �elds. This method guarantees that we end up

with a free-�eld realization of the non-linear N = 3 superconformal algebra. Note that

this is speci�cally due to our gradation E0+J0 (for the usual gradation E0 [8], the whole

so(N) sub-algebra of osp(N j2) has grade zero and thus does not get bosonized).

Using the methods of [7], where we use the �ltration of QBRST given by (2.13), we can

compute the non-trivial elements of the cohomology by starting with the total currents

that are s`(2) highest weights. In this way, we �nd for the stress tensor:

T =
4�

1 + 2�

�
Ê

+ +
2

�
Ê

02 � @Ê
0 � 2

�
Ĵ
02 + �@Ĵ

0 � 1 � 2�

8�
@��� +

+
1 + 4� + 2��

8�
�@��+

1 + 2�

k2
�@� +

1 + 3�+ ��

4�
 @ � +

1 + �

4
@ � �

�4

�
ĵ
+0
� +

2

�
ĵ
�+
 � 2

�
Ĵ
+
� +

1

�
ĵ
+0
� 

�
(2.14)

and for the generators of the so(3) Kac-Moody algebra:

K
+ = 4

�
Ĵ +

2

�
ĵ
�+
� � 1

2�
ĵ
�+
� � � 1

�
Ê

0 � � � 1

2
Ĵ
0��� 1

2
ĵ
+0 � � 1

�
Ĵ
0 � � +

+
1

2�
ĵ
�+ � � � 1 + 2�

8
@��� 1 + 2�

4
@ � � � 1

16
��2�� 1

8
�� � 

�
; (2.15)

K
3 = 4(Ĵ0 +

1

4
��� � 1

4
�  ) ; (2.16)

K
� = 4� : (2.17)

In addition, we get the following three supercurrents:

G
+ =

4i
p
2p

1 + 2�

�
ĵ
++ � (1 + 2�)2

16�
@
2 � +

1

2
Ê

+ � � 2

�
Ĵ
+
� � 1

2
ĵ
+0�� �

�Ê0
ĵ
�+ +

2

�
Ĵ
0
ĵ
�+ +

1

�
Ê

02 � +
1

�
Ĵ
02 � � 1

2
@E

0 � � 1

2
@Ĵ

0 � +

+
1 + 2�

8�
 @ � � +

1

�
ĵ
+0 � � � 1

�
ĵ
�+ �  +

1

2�
ĵ
+0����

�1 + 2�

16�
@ � ���� 1

16
�
2
 +

1

�
Ê

0��� � 1

4�
Ĵ
0 � ����

�1 + 2�

4�
��@� � 1

4�
Ê

0 � ��� � 1

8�
��2�� +

1

4�
�  ��� � 1

4�
@ � Ê0 �

�3 + 4�

4�
� Ĵ0 + @ĵ

�+
�
; (2.18)
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G
3 =

4i
p
2p

1 + 2�

�
ĵ
+0 � 1

�
ĵ
�+
�+

1 + 2�

8�
@ � � +

1

4
�� � 2

�
Ê

0
� +

1

2�
Ĵ
0 � �+

+
1 + 2�

2�
@� +

1

2�
Ê

0 � � +
1

2�
���� � 1

2�
�  �

�
; (2.19)

G
� =

4i
p
2p

1 + 2�
( +

2

�
��) : (2.20)

From these expressions we get a free-�eld realization of the N=3 superconformal algebra

in nonlinear form, by taking only the zero grade part of each generator. However, a simple

count of the number of �elds shows that there is one fermion missing to give the �eld

content of the N =1 string (assuming that the matter sector is realized in terms of one

boson and one fermion). Of course, this is not surprising since the non-linear form of the

algebra is well-known to arise by factorization of a single fermion [10].

Note also that in the expression for the stress tensor there is a free parameter �,

which determines the conformal weights of K+, K�, G+, G�, and thus serves as a twist

parameter. If we choose the value � = 1 + 1

�
, we get conformal weight 1=2 for K+, 3=2

for K�, 1 for G+ and 2 for G�. This choice is motivated by the string representation,

where G� is the anti-ghost. The resulting central charge of the stress tensor is then �1=2.
Since in a string theory the central extension of the Virasoro algebra should vanish, this is

further indication of the missing of one fermionic degree of freedom. Therefore, we adjoin

a free fermion � with OPE

�(z) �(w) = �(1 + 2�)

(z � w)
: (2.21)

We can now linearize the algebra by rede�ning the generators

Tlin = T +
1

2(1 + 2�)
�@� ;

G
a
lin = G

a +
1

1 + �
�K

a
: (2.22)

This indeed results in a free-�eld realization of the linear N = 3 algebra (cf., (B.2)).

However, the generator G� is not yet precisely of the desired form, for which G� /  .

Rather, we obtain the expression

G
� =

4i
p
2�p

1 + 2�
( +

2

�
��)� 4

1 + 2�
�� : (2.23)

From this we can infer that we need, in addition, to perform a similarity transformation

~T = STS
�1
;
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~Ga = SG
a
S
�1
;

~Ka = SK
a
S
�1
;

F = S�S
�1
; (2.24)

where

S = exp
h 1

2�i

I
dz (

2

�
�� � � iq

2�(1 + 2�)
�� � )

i
: (2.25)

Furthermore, we bosonize the Cartan currents as follows:

Ê
0 = i

p
1 + 2�

4
@'1 ; Ĵ

0 =

p
1 + 2�

4
@'2 ;

'k(z)'l(w) = ��kl ln(z � w) ; (2.26)

and rescale the remaining �elds according to

�! 1p
1 + 2�

� ; � ! 2
p
2p
�
� ;

 ! 2
p
2�p

1 + 2�
 ; � !�

p
1 + 2�

2
p
2�

� ;

�!�2i� ; ��! i

2
�� : (2.27)

Then, after all these manipulations, we �nally arrive at the following form for the Miura-

transformed linearized generators:

~T = �1

2
(@'1)

2 � 1

2
(@'2)

2 +
3

2
�@�� +

1

2
@���� 2 @ � � @ � +

+
1

2
�@�+

1

2
�@� � i�p

1 + 2k
@
2
'1 +

1 + �p
1 + 2k

@
2
'2 ;

~G+ = 2i
�
� (
1

2
(@'1)

2 +
1

2
(@'1)

2 +
i�p
1 + 2�

@
2
'1 � 1 + �p

1 + 2k
@
2
'2 � 3

2
�@�� �

�1

2
@���� 1

2
�@�� 1

2
�@� ) + ��(

1

2
@'1� +

1

2
@'2�+

i�p
1 + 2k

@� �

� 1 + �p
1 + 2�

@�)� 1

2
(
3

2
� �@��+

1

2
� @���� �  @ � +

3

2
���@ � +

+
1

2
��2 + � ��@�) +

p
1 + 2k

2
@(���) +

1 + 2k

2
@
2 � +

1

4
@(��� � ) +

+
p
1 + 2�@('2 � )

�
;

~G3 = @'1� + @'2�+ 3�@ � + 2@� � +  ��+
2i�p
1 + 2�

@� � 2 + 2�p
1 + 2�

@� ;

~G� = 2i ;
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~K+ = 2i
�
� 1

2
� @'1� � 1

2
� @'2�+

1

2
� �@ � +

1

2
� �� +

i�p
1 + 2�

� @'1 +

+
�p

1 + 2�
� @'2 �

p
1 + 2�

2
@'2

�� +
1

4
��2� +

p
1 + 2�

2
@ � �+

+
1 + 2�

2
@��

�
;

~K3 = � � + ��� +
p
1 + 2�@'2 ;

~K� = 2i� ;

F = � � +
p
1 + 2�� : (2.28)

These formulas correspond exactly to the generators of the hidden N=3 superconformal

algebra of the N =1 superstring as found in [2]. We just need to identify '1 and � with

the matter system, and '2 and � with the Liouville system. Moreover, we see that the

di�eomorphism ghost of the superstring is represented by � , the anti-ghost by  , and

their bosonic superpartners by �� and �, respectively. This means that G+ is indeed the

N=1 string BRST operator, K+ its superpartner with respect to the N=1 supercharge,

G3, and K3 is the ghost number current. Finally, note that the Kac-Moody level � is

related to the matter central charge as follows:

ĉm = 5� 2((1 + 2�) +
1

1 + 2�
) ; (2.29)

where, of course, ĉm = 10 corresponds to the critical superstring.

3 N=2 Superstring

In this section we will generalize the methods discussed above to the N =2 superstring

[11],[12]. We will �rst construct the generators of the hidden, twisted N=4 superconfor-

mal algebra. In fact, such an algebra has already been found in [6], but only for critical

N =2 strings. We will generalize this to non-critical N =2 strings, where the conformal

anomaly is cancelled by the N=2 Liouville system.

To begin, we would like to make some general remarks about the twistedN=4 algebra.

(Our conventions, in which we follow [13], can be found in appendix B.) It is known [14]

that N=4 algebras come in a lot of varieties, but the most general algebra consists of the

energy-momentum tensor T , four supercurrents G�, G�K , and two commuting s`(2) Kac-

Moody algebras at levels k+ and k� whose currents we denote by A�i with i 2 f+; 3;�g.

10



Furthermore, there are four fermionic currents of spin 1

2
, denoted by Q�, Q�K , plus a

U(1) current U . It is possible to rede�ne the generators such that the spin-1
2
currents and

the U(1) current decouple, so that one is left over with the energy momentum tensor, the

supercharges and the Kac-Moody currents. This is the non-linear form of the algebra,

which is the form that we will get from Hamiltonian reduction of osp(4j2).

Let us �rst discuss the twisted linear N = 4 algebra, by noting that there are two

separate N=2 sub-algebras. We can use one of the two associated U(1) currents to twist

the energy-momentum tensor as follows:

T̂ = T + @M+K�K ; (3.1)

where the N=4 currentM is de�ned in appendix B. The generators T̂ , G�K and 2M+K�K

then form a topologically twisted N=2 sub-algebra. The other N=2 algebra has to have

vanishing central charge in order to be consistent with the vanishing conformal anomaly

of T̂ . We can achieve this by rede�ning

Ĝ� = G� � 2k�

k
@Q� : (3.2)

Moreover, the condition for Ĝ� to be primary with respect to T̂ forces the levels of the

Kac-Moody algebras to be equal: k+ = k�. In addition, due to these modi�cations, we

also have to rede�ne the U(1) current

M̂+� =M+� +
U

2
: (3.3)

The generators T̂ , Ĝ� and M̂+� form a N = 2 superconformal algebra with vanishing

central charge. After twisting, the conformal weight of G+K is equal to 1, G�K has

weight 2, A++ and A�� have weights 1

2
, and A+� and A�+ have weights 3

2
. Furthermore,

Q+K and Q�K have weights 0 and 1, respectively. The conformal weights of the rest of

the generators remain unchanged.

For the construction of this algebra in terms of the �eld content of a N = 2 string

theory we follow the line of [2]. We do not make any assumption about the speci�c

realization of the matter system. We represent it, generically, by the generators of a

N=2 superconformal algebra: Tm, Gm� and Jm, and denote its central charge by cm.

The Liouville system is given in terms of a complex scalar �eld �l and a complex spinor

 l with OPE

@�l(z)@ ��l(w) = � 1

(z � w)2
;  l(z) � l(w) =

1

z � w
: (3.4)

11



In terms of these �elds we can form an N=2 algebra as follows:

Jl = � l � l �Q@�l �Q@ ��l; (3.5)

Gl+ = @�l
� l �Q@ � l; (3.6)

Gl� = �@ ��l l �Q@ l; (3.7)

Tl = �@�l@ ��l � 1

2
 l@

� l +
1

2
@ l

� l � Q

2
@
2
�l +

Q

2
@
2 ��l; (3.8)

where we introduced a background charge parameter, Q, such that the central charge of

the Liouville system is given by cl = 3� 6Q2.

Since we are dealing with local N = 2 supersymmetry on the string world sheet,

we introduce a (b; c) ghost system for the di�eomorphism symmetry, two bosonic ghost

systems (��; 
�) for the super-di�eomorphisms, and additional fermionic ghosts (�; �)

with spins (1; 0) for the U(1) gauge symmetry. The OPE's of these ghosts are

b(z)c(w) = ��(z)
�(w) = �(z)�(w) =
1

z � w
: (3.9)

We then �nd for the N=2 algebra in the ghost sector

Jg = �@(�c)� �+
� + ��
+; (3.10)

Gg+ =
3

2
�+@c+ @�+c+

1

2
@�
+ + �@
+ + �+� � b
+; (3.11)

Gg� = �3

2
��@c� @��c+

1

2
@�
� + �@
� + ��� + b
�; (3.12)

Tg = �2b@c� @bc+
3

2
�+@
� +

1

2
@�+
� +

3

2
��@
+ +

1

2
@��
+ �

��@�; (3.13)

which has a central charge equal to �6. The total central charge of the N = 2 string,

joining together matter, Liouville �elds and ghosts, thus vanishes, provided we �x the

Liouville background charge to be Q = �
p
cm�3p
6

. From the ghosts we can build an

additional N=2 multiplet of currents

|ghost = ��c; (3.14)

|ghost+ = �
+ + �+c; (3.15)

|ghost� = �
� � ��c; (3.16)

Jghost = �bc+ �+
� + ��
+ � ��: (3.17)
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where the highest-spin component is the ghost number current. The N=2 string BRST-

current is part of an N=2 multiplet as well, which has components:

jBRST = c(Jm + Jl +
1

2
Jg); (3.18)

jBRST+ = 
+(Jm + Jl +
1

2
Jg)� c(Gm+ +Gl+ +

1

2
Gg+); (3.19)

jBRST� = 
�(Jm + Jl +
1

2
Jg)� c(Gm� +Gl� +

1

2
Gg�); (3.20)

JBRST = c(Tm + Tl +
1

2
Tg) + 
+(Gm� +Gl� +

1

2
Gg�)�

�
�(Gm+ +Gl+ +
1

2
Gg+) + �(Jm + JL +

1

2
Jg): (3.21)

Let us now introduce the modi�ed ghost current

I = Jghost �Q@�l +Q@ ��l; (3.22)

and the improved BRST current

IBRST = JBRST � 1

2
@(c��)� 1

4
@(c
+��)� 1

4
@(c
��+) +Q

2
@
2
c+

+Q@(c@�l)�Q@(c@ ��l) +Q@(
+ l)�Q@(
� � l); (3.23)

where the total derivative terms have been chosen such that IBRST is a primary �eld

of weight 1 and has regular OPE with itself. Together with the total energy momentum

tensor, Ttot = Tm + Tl + Tg, and the antighost, b, these currents form a topologically

twisted N=2 algebra with central extension

c = cm � 3 : (3.24)

Note that the critical N = 2 string, which has cm = 3, is mapped onto a twisted N = 4

algebra with vanishing central charge; it is this case which has previously been discussed

in [6].

In order to make contact with the above-described twisted N=4 algebra, we identify

Ttot $ T̂ ; IBRST $ G+K ; b$ G�K ; I $ 2M+K�K : (3.25)

Furthermore, we can identify the original N =2 generators of the string, Gtot� = Gm� +

Gl�+Gg� and Jtot = Jm+Jl+Jg, with the twisted currents of the N=4 superconformal

algebra:

Gtot� $ Ĝ� ; Jtot $ M̂+� : (3.26)
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Let us brie
y sketch how to construct the remaining N=4 currents. One reads from the

twisted N=4 superconformal algebra that

G+K(z)Ĝ+(w) =
i

2

A++(w)

(z � w)2
: (3.27)

Similar relations hold for the other generators. With the help of the above-mentioned

identi�cations, one gets the whole twisted N = 4 algebra, described at the beginning of

this section, in terms of the �elds of the N=2 string. In summary, we �nd the following

expressions for the s`(2) Kac-Moody currents in the (+)-sector

A
++ = i(jBRST+ + 2Q � l� +Q � l@c+

1

2
��


2

+ �
1

2
�+c� +

+
1

2
�+
+
� +

1

4
�+c@c+ 2Q
+@ ��l � 1

2

+bc+

1

4

+c@� �

�
+�� + 2Q@ � lc+
1

2
@
+c� � 2Q2

@
+); (3.28)

A
+3 = � i

2
(Jtot + Jghost � 1

2
@|ghost + 2Q@ ��l); (3.29)

A
+� = �i�� ; (3.30)

and the following expressions for the s`(2) Kac-Moody currents in the (�)-sector:

A
�+ = �i�+; (3.31)

A
�3 = � i

2
(Jtot � Jghost � 1

2
@|ghost + 2Q@�l); (3.32)

A
�� = �i(jBRST� � 2Q l� +Q l@c� 1

2
��c� � 1

2
��
+
� �

�1

4
��c@c� 1

2
�+


2

� + 2Q
�@�l +
1

2

�bc+

1

4

�c@� +

+
��� + 2Q@ lc+
1

2
@
�c� + 2Q2

@
�): (3.33)

Furthermore, we have the four fermionic spin-1
2
currents

Q+K = �1

2
jBRST � 2Q2

� �Q � l
� �Q l
+ � 1

4
��
+c+

+
1

4
�+
�c�Qc@�l �Qc@ ��l +

1

2

+
�� +

1

4
c@c�; (3.34)

Q�K =
1

2
�; (3.35)

Q+ = �1

2
|ghost+ +Q � l; (3.36)

Q� = +
1

2
|ghost� �Q l: (3.37)
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and, �nally, a spin-0 bosonic current

' =
1

2
|ghost �Q�l �Q��l; (3.38)

where the U(1) current of the twisted N=4 superconformal algebra is given by U = @'.

In the remainder of this section we will show how one can construct these currents

by means of quantum Hamiltonian reduction of osp(4j2). The bosonic part of this Lie

superalgebra consists of an s`(2) algebra at level � and an so(4) algebra at level �2�. We

make use of the fact that so(4) can be written in terms of two commuting s`(2) algebras,

in rede�ning the currents

M
� = i(J12+ J

34 � iJ
13 � iJ

23) ;

M
0 = i(J14+ J

23) ;

N
� = i(�J12+ J

34 � iJ
13� iJ

23) ;

N
0 = �i(J14� J

23) : (3.39)

For the fermionic currents of osp(4j2), we choose a new basis as well,

j
�ab = �

ab
i j

�i
; a; b 2 f+;�g ; (3.40)

where

�1 =

0
@ 1 0

0 1

1
A ; �2 =

0
@ 0 1

1 0

1
A ; �3 =

0
@ 0 �i
i 0

1
A ; �4 =

0
@ 1 0

0 �1

1
A(3.41)

These fermionic currents transform under the representation (1
2
; 1
2
; 1
2
) of the three s`(2)

sub-algebras of osp(4j2).

We now de�ne the gradation by choosing the Cartan element H = E0 +M0 � N0.

Accordingly, the algebra osp(4j2) decomposes into positive, zero and negative parts, which

are displayed in the following table:

E+ E0 E� M+ M0 M� N+ N0 N�

H 1 0 �1 1 0 �1 1 0 �1

j+++ j++� j+�+ j+�� j�++ j�+� j��+ j���

H 1=2 3=2 �1=2 1=2 �1=2 1=2 �3=2 1=2
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The constraints that we choose are compatible with the gradation and are given by:

��E = E
� � �

2
;

��M =M
� � � ;

�+

N = N
+ � � ;

�+�+ = j
+�+ �  ;

��++ = j
�++ � �� 1

4
� � ;

���+ = j
�++

;

���� = j
��� � ��� 1

4
� � ; (3.42)

where

�(z)��(w) = �1

4

�

(z � w)
;  (z) � (w) = �(z)��(w) = �(z)��(w) =

1

(z �w)
: (3.43)

As for the N =1 string, the s`(2) embedding is given by E�; E0, and we again face the

problem of having highest weights in the negatively graded part. In the above choice of

constraints, we took care of this by the introduction of the auxiliary �elds �; ��; �; ��;  ; � ;

in addition, the auxiliary �elds (�; ��) are needed to make the constraints �rst class. The

corresponding gauge invariant action has the form

S = SWZW [g]+
1

2�

Z
d
2
z str( �A�)� 1

2�

Z
d
2
z (���@�+ �� �@�+ � �@ )� 2

��

Z
d
2
z ���@� (3.44)

Accordingly, the gauge transformation for the �elds are

�� = �
2
�+++ ; � �� = �

2
�+�� ;

� = �1

2
�+++� � 1

2
�+��� ; � � = 2��+� ;

�� = 0 ; ��� = ��+M + 1

2
�+++ ;

�� = 0 ; ��� = ���N + 1

2
�+++ ;

� �A = �@� + [ �A; �] ; �J = @� + [J; �] :

(3.45)

We do the gauge �xing analogous to the previous chapter. In order to obtain the BRST

operator, we need the following ghosts (these are not to be confused with the ghosts of

the N=2 system !):

C = ce+ + c
M
t
M
+ + c

N
t
N
� + 


�+�
t�+� + 


+��
t+�� + 


++�
t++� + 


+++
t+++ ;

B = be� + b
M
t
M
� + b

N
t
N
+ + �

+�+
t+�+ + �

�++
t�++ + �

��+
t��+ + �

���
t��� : (3.46)
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From the ghost action, which is the same as (2.7), we can read o� the OPE's for the

ghosts:

b(z)c(w) =
1

(z � w)
; b

M (z)cM(w) = b
N(z)cN(w) =

�2
(z � w)

;

�
+�+(z)
�+�(w) = �

�++(z)
+��(w) = �
���(z)
+++(w) =

= ����+(z)
++�(w) = 1

(z � w)
: (3.47)

The currents J of osp(4j2) get modi�ed by the ghost contributions: J ! Ĵ � J + Jgh,

where

E
+

gh =
1

2
�
+�+



++�

;

E
0

gh = �1

2
bc� 1

4
�
+�+



�+� +

1

4
�
�++



+�� � 1

4
�
��+



++� +

1

4
�
���



+++

;

E
�
gh = �1

2
�
��+



�+�

;

M
+

gh =
1

2
�
�++



++�

;

M
0

gh =
1

4
b
M
c
M +

1

4
�
+�+



�+� � 1

4
�
�++



+�� � 1

4
�
��+



++� +

1

4
�
���



+++

;

M
�
gh = �1

2
�
��+



+��

;

N
+

gh = �1

2
�
��+



+++

;

N
0

gh = �1

4
b
N
c
N � 1

4
�
+�+



�+� � 1

4
�
�++



+�� +

1

4
�
��+



++� +

1

4
�
���



+++

;

N
�
gh = �1

2
�
��+



�+�

;

j
+++

gh = �1

4
b
N


++� � 1

4
�
+�+

c
M +

1

2
�
�++

c ;

j
+�+
gh = �1

4
b
M


+++ � 1

4
b
N


+�� +

1

2
�
��+

c ;

j
+��
gh = �1

4
b
M


++� � 1

4
�
+�+

c
N +

1

2
�
���

c ;

j
�++
gh =

1

2
b


+++ � 1

4
b
N


�+� � 1

4
�
��+

c
M
;

j
�+�
gh =

1

2
b


++� � 1

4
�
�++

c
N � 1

4
�
���

c
M
;

j
���
gh =

1

2
b


+�� � 1

4
b
M


�+� � 1

4
�
��+

c
N
: (3.48)

The BRST operator can be split according to our gradation as QBRST = Q0 +Q1 +Q2,

where

Q0 =
1

2�i

I
d
2
z [��

2
c+ c

M
�+ c

N
�] ;
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Q1 =
1

2�i

I
d
2
z [�
�+� � 


+��(�� 1

4
� �) � 


+++(��� 1

4
� �)] ;

Q2 =
1

2�i

I
d
2
z [c(E� +

1

2
E
�
gh)� c

M(M� +
1

2
M
�
gh)� c

N(N� +
1

2
N
�
gh)� 


�+�(j+�+ +

+
1

2
j
+�+
gh )� 


+��(j�++ +
1

2
j
�++
gh ) + 


++�
j
��+ � 


+++(j��� +
1

2
j
���
gh )] : (3.49)

Analogously to the N=1 string, we can now solve the BRST cohomology and arrive at a

realization of the non-linear N=4 superconformal algebra. Since the explicit expressions

are rather lengthy, we state only the correspondence of the s`(2) highest weights with the

generators of the N=4 algebra:

Ê
+ ! T ;

M̂ i ! A
+i

; N̂ i ! A
�i
;

ĵ
+++ ! G+ ; ĵ

+�� ! G� ;

ĵ
++� ! G+K ;  ! G�K : (3.50)

After the Miura transformation, we get a free-�eld realization in terms of the Cartan

generators and the auxiliary �elds. To linearize the algebra, we adjoin four fermions and

a U(1) current with operator products

�(z)��(w) = � (z)�� (w) =
�

(z � w)
; u(z)u(w) =

2�

(z � w)2
: (3.51)

The necessary rede�nitions of the generators are given in (B.8). We take here (�; ��)

corresponding to (Q+; Q�) and (�; �� ) corresponding to (Q+K; Q�K). The �nal form of

the generators can now be �xed by requiring that they match the form of the twisted

N=4 currents of the N=2 string. This leads to the following similarity transformations:

S = exp
h 1

2�i

I
dz (�1

�

� ��� 1

�

� ��� � 1

2�
� M̂0��� 1

�

� N̂0��+
1

4�
� u��+

1

2�
� �� +

+
1

2�
� ��� +

1

�2
� ������ 1

4�2
� � �� �� +

1

4�
� ������ 1

4�
� ��� ��)

i
;

R = exp
h 1

2�i

I
dz (

1

2�
��� ��� 1

2�
���� ��)

i
: (3.52)

which act on the currents as follows:

~T = RSTS
�1
R
�1
;

~Ga = RSGaS
�1
R
�1
; ~A�i = RSA�iS�1R�1 ;

Q+ = RS�S
�1
R
�1
; Q� = RS��S�1R�1 ;

Q+K = RS�S
�1
R
�1
; Q�K = RS��S�1R�1 ;

~u = RSuS
�1
R
�1
: (3.53)
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(Note that R and S do not commute with each other.) Finally, we bosonize the Cartan

currents

Ê
0 =

i
p
�

4
(@�1 + @ ��1) ;

~u = i
p
�(@�2 + @ ��2) ;

M̂
0 =

i
p
�

4
(@ ��1 � @�1 + @�2 � @ ��2) ;

N̂
0 =

i
p
�

4
(@ ��1 � @�1 � @�2 + @ ��2) ;

where @�i(z)@ ��j(w) = � �ij

(z �w)2
; (3.54)

and rescale the �elds

�! 1p
�
� ; ��! 1p

�
�� ;

�! 2ip
�
� ; ��! 2ip

�
�� ;

 ! 1

2
 ; � ! 2 � ;

�! 1

2
� ; ��! 2�� ;

� ! 1

2
� ; �� ! 2�� ;

� ! 1

2�
� ; �� ! 2�� : (3.55)

The currents (3.53) then become precisely the currents of the BRST algebra of the N=2

string. Since these expressions are in general rather long, we give here just the most

interesting one:

G+K = � (�@�1@ ��1 � i

p
�

2
(@2�1 + @

2��1)� @�2@
��2 � 1

2
�@��� 1

2
��@�� 1

2
�@��� 1

2
��@�)�

�i
p
�

2
@ � (@�2 � @ ��2) + ��(

1

2
@�1�+

1

2
@�2�+ i

p
�

2
@�)� i

p
�

2
@���+ ��(

1

2
@ ��1���

�1

2
@ ��2��+ i

p
�

2
@ ��)� i

p
�

2
@����+ � (����� ���+ i

p
�

2
(@�1 + @ ��1 + @�2 � @ ��2)) +

+� ���+
1

2
��@���� � 1

2
@������ � � ��� �  ���� � �  @ � � � �@�� � 1

2
� ��@��

�1

2
� ��@� +

1

2
� @���+

1

2
� @��� � @ � � �� � @ � ���+ @ � ��� : (3.56)

Clearly (3.56) represents the BRST-operator of the N = 2 string. The matter system

is represented by �1, ��1 and by �, ��, the Liouville system by �1, ��1 and by �, ��. The
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ghost system turns out to be given by  , � for the di�eomorphism ghosts, �, �� and �, ��

for their bosonic superpartners and � , �� for the U(1) ghosts. The background charge of

the Liouville system that cancels the conformal anomaly is given by Q = i
p
�, where, of

course, � is the level of the osp(4j2) WZW-model.

4 s`(2j1) Embeddings and the Gauge Invariant Action

for General N

We have shown in the previous chapters how one can obtain N = 1 and N = 2 strings

by Hamiltonian reduction. We would now like to brie
y discuss the general properties of

this procedure for osp(N j2) with arbitrary N .

As mentioned above, one expects that N�2-extended string theories will be obtained

by embeddings of s`(2j1) into osp(N j2). Under the adjoint action of this embedding,

the latter algebra will decompose into irreducible representations of s`(2j1). The bosonic
part of s`(2j1) consists of an s`(2) algebra e�; e0 and a U(1)-part u. The four fermionic

generators t�, �t� transform as (1
2
; 1) and (1

2
; �1), respectively:

[e0; t�] = �1

2
t� [e0; �t�] = �1

2
�t� ;

[u; t�] = t� [u; �t�] = ��t� ; (4.1)

Irreducible representations are labelled by two quantum numbers (j; q), where j is the

spin and q the u-charge. Regular irreducible representations span a multiplet

jj; qi

���j � 1

2
; q � 1

E ���j � 1

2
; q + 1

E

jj � 1; qi
e
ee

%
%%

%
%%

e
ee

with t+ jj; qi = �t+ jj; qi = 0. The embedding s`(2j1) ,! osp(N j2) is de�ned by the

bosonic s`(2) sub-algebra and by a Cartan element of the so(N)-part. For the string-
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related Hamiltonian reduction, we require q = 0 for all multiplets. This results into the

following decomposition of osp(N j2) with respect to s`(2j1):

j1; 0i

���1
2
;�1

E ���1
2
; 1
E

j1; 0i

(1)

e
ee

%
%%

%
%%

e
ee ���1

2
; 0
E

j0;�1i j0; 1i

(N � 2)

%
%%

e
ee j0; 0i

(1
2
N(N � 1)� 2N + 3)

The numbers below the multiplets denote the multiplicities. Of course, the (j = 1)-

multiplet corresponds precisely to the s`(2j1) itself. It is fairly obvious that the string

BRST current and the anti-ghost will arise from this multiplet, if we choose the gradation

corresponding to (e0 + u). From this it becomes clear that the U(1) part u will represent

the ghost number current of the string model. If we had chosen an embedding leading to

multiplets with q 6= 0, these multiplets would have non-vanishing ghost number, and this

appears not acceptable for a string theory.

The N�2 multiplets with j = 1

2
will give rise to the underlying N�2 supersymmetries

of the string. The states j0;�1i and j0; 1i belong to the so(N) part of osp(N j2). Note

that there are in general s`(2) highest weights that are negatively graded. These will

give rise to bosonic auxiliary �elds which correspond to the N � 2 �; 
 systems of the

string. Note also that the j = 1

2
multiplets are short multiplets, which typically arise in

the non-linear form of superconformal algebras.

Simple counting shows that we will have in addition 1

2
N(N�1)�2N+3 singlets. They

are simply the rest of the generators of the so(N) part. We note that due to this there will

be an additional di�culty in the reduction for N � 5. Namely there will be generators

of the so(N) part besides the Cartan elements that do not get automatically bosonized.

Nevertheless, from cursory inspection we expect that one can �nd a bosonization of them

that allows for a string interpretation.

In order to �nd gauge invariant lagrangian for general osp(N j2), let us �rst make

21



a remark concerning di�erent de�nitions of gradations. In the reduction process it is

convenient to think of the gradation being de�ned on the current algebra. Thus the

ghosts acquire non-trivial grades via to the ghost contribution to the currents, whereas

the auxiliary �elds have grade zero. This is important for �nding the �ltrations of BRST

operators (2.13),(3.49). However, for �nding the gauge invariant lagrangian, it is more

convenient to de�ne the gradation on the algebra itself. That is, we will assign non-trivial

grades also to the auxiliary �elds.

The starting point is the action

S0 = � 1

2�

Z
d
2
z str(

�

2
�Ae� + �A + �A') : (4.2)

This is the a priori non-invariant part of the WZW-model on osp(N j2), subject to the

constraint that the lowering operator of s`(2) is equal to �
2
. The �eld  is the auxiliary

�eld for the negatively graded highest weight of s`(2j1) and ' are the auxiliary �elds for

the negatively graded so(N) currents.

Under a gauge transformation we have (� being the gauge parameter)

�S0 = � 1

2�

Z
d
2
z str

�
�A 1

2

(
�

2
[� 1

2

; e�] + [� 1
2

; '�1]) + �@� 1
2

� � 1

2

+ �@�1'�1 +

+ �A 1

2
� � 1

2
+ �A1�'�1

�
: (4.3)

The subscripts denote explicitly the grades of the �elds. Since under the decomposition

osp(N j2)! s`(2j1) the half-integer graded �elds can come only from the fermionic part,

we can decompose �A 1

2

uniquely into Â 1

2

2 ker ade+ and ~A 1

2

2 ker ade� . Let us now look

at the term of the form str(Â 1

2

[� 1
2

; '�1]). We see that [� 1
2

; '�1] has to be an element of

ker ade� to have non-vanishing supertrace. Since '�1 lies in both ker ade+ and ker ade� ,

this shows that only the part of � 1
2
contributes to this term which lies in ker ade+ . We

denote this by ~� 1
2

. Similar arguments lead us to introduce �̂ 1
2

2 ker ade� . We arrive thus

at

�S0 = � 1

2�

Z
d
2
z str

�
Â 1

2

(
�

2
[~� 1

2

; e�] + [�̂ 1
2

; '�1]) + ~A 1

2

([~� 1
2

; '�1] + � � 1

2

) +

+�@�̂ 1
2

 � 1

2

+ �@�1'�1 + �A1�'�1

�
: (4.4)

It is easy to see that gauge invariance can be restored by modifying the constraints, that

is, by adding the following term to the lagrangian:

S1 = � 1

2�

Z
d
2
z str( ~A 1

2

([ � 1

2

; '�1] + [�; e�])) ; (4.5)
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where the new �eld � lies in the part of osp(N j2) with half-integer grade. � 1

2

is conjugate

to  � 1

2

and therefore lies in ker ade�. Gauge invariance also forces us to introduce kinetic

terms for the auxiliary �elds,

Skin = � 1

2�

Z
d
2
z str(�@ � 1

2

 � 1

2

+ �@ �'1'�1 +
1

�
�@�[�; e�]) : (4.6)

The whole action is gauge invariant if we assign to the auxiliary �elds the following

transformation rules:

�'�1 = 0 ; � �'1 = �1 � [~� 1
2

; � 1

2

] ;

� � 1

2

= �̂ 1
2

; � � 1

2

= �[~� 1
2

; '�1] ;

�� =
�

2
~� 1
2

: (4.7)

From the gauge invariant action we can proceed in complete analogy to the previous

sections, and infer the form of the constraints. The interpretation of the auxiliary �elds

is clear, in that ( ; � ) will always correspond to the di�eomorphism ghosts of the string.

Their bosonic superpartners can be identi�ed with ('; �'). The additional ghosts that are

present in string theories with extended supersymmetries will come in by linearizing the

algebra. From our experience with the N =1 and N =2 strings we expect � to describe

the fermions in the matter sector.

5 A Note on Topological Strings

As pointed out, twisted N = 2 algebras formed by the BRST-current, the anti-ghost

together with the energy momentum tensor and the ghost current are one of the most

basic features of the BRST formulation of string theories. The construction of topological

strings [15] on the other hand involves from the very beginning realizations of twisted

N=2 superconformal algebras for the matter, Liouville and ghost sector separately. The

BRST operator of topological strings has the special property that it is the sum of Qs =
1

2�

H
G+dz and Qv =

1

2�

H
JvBRSTdz, where G+ denotes the sum of the supercharges of the

matter, Liouville and ghost systems and JvBRST is the BRST current that arises by gauge

�xing the local world sheet symmetries. According to our general reasoning, we expect also

for the topological string that JvBRST and b form a twisted N=2 superconformal algebra.

This suggests that there should actually be a doubly twisted N=4 superconformal algebra

in the topological string.
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Let us �rst state some remarks on this hidden, doubly twisted N =4 superconformal

algebra. We focus on the twisted currents

T̂ = T + @M+� + @M+K�K +
1

2
@U = T + i@A

+3 +
1

2
@U;

Ĝ+ = G+ + @Q+;

Ĝ� = G� + @Q�;

Ĝ+K = G+K � @Q+K;

Ĝ�K = G�K + @Q�K;

Ĵ1 = 2iA+3
;

Ĵ2 = i(A+3 �A
�3) + U : (5.1)

Note that the twist assigns conformal weight 1 to fG+; G+Kg, weight 2 to fG�; G�Kg,
wight 0 to A++, weight 2 to A+�. The U(1)-currents and A�� of the sub-algebra stay at

conformal weight 1.

At k+ = k� the currents fT̂ ; Ĝ+; Ĝ�; Ĵ1g form a topologically twisted N = 2 sub-

algebra with central extension 6k+, whereas fT̂ ; Ĝ+K ; Ĝ�K ; Ĵ2g form a topologically twisted

N =2 sub-algebra with vanishing central extension. It is quite remarkable that (5.1) to-

gether with fA++; A+�; A��; Q�; Q+Kg form a closed sub-algebra. In the following we

will see that it is exactly this sub-algebra that is realized in the topological string.

In the topological string we take the matter sector to be completely arbitrary. We only

require that it exhibits a twisted N = 2 superconformal symmetry, with some (twisted)

central extension cm. In representing the Liouville sector we follow [15] and introduce two

bosonic �elds f�; 'g and two fermions f�; g with OPE's

�(z)'(w) = � ln(z � w) ; @�(z) (w) =
1

z � w
: (5.2)

The generators of the twisted N = 2 superconformal algebra in the Liouville sector are

then

Jl = �@� �Q@'+Q@�;

Gl+ = @� �Q@ ;

Gl� = �@�@'+Q@
2
�;

Tl = �@�@'� @�@ +Q@
2
� ; (5.3)
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where Q is an arbitrary background charge, in terms of which the central extension is

cl = 3 + 6Q2. Since only the G� supercharge corresponds to a local gauge symmetry,

we have for the ghosts the usual fermionic (b; c) system for the di�eomorphisms, plus a

bosonic (�; 
) system as their superpartners, with

b(z)c(w) = �(z)
(w) =
1

z � w
(5.4)

(both ghost systems have spins (2;�1)). The N=2 generators in the ghost sector look

Jg = 2�
 � bc;

Gg+ = �b
;
Gg� = �@�c� 2�@c;

Tg = �2b@c� @bc+ 2�@
 + @�
 ; (5.5)

and give rise to a twisted central extension of cg = �9.

We are free to add the following total derivatives to the BRST current,

J
v
BRST = c(Tm + Tl +

1

2
Tg) + 
(Gm� +Gl� +

1

2
Gg�)�

(Q+
cm

6Q
)@(c@� + 
@�) ; (5.6)

and introduce the ghost current:

Ig = �bc+ �
 + (Q+
cm

6Q
)@� : (5.7)

The improvement terms in JvBRST and in Ig are such that fTtot; JvBRST ; b; Ighg indeed forms

a twisted N =2 superconformal algebra2 with vanishing central extension. Furthermore,

we �nd that

A
++ = �ic(Gm+ +Gl+ +

1

2
Gg+) + i
(Jm + Jl +

1

2
Jg)� i k @
;

A
+3 = � i

2
(Jm + Jl + Jg);

A
+� = �i� : (5.8)

form an s`(2) Kac-Moody algebra at level

k =
1

6
ctot ; (5.9)

2This algebra with vanishing central charge is of course di�erent and independent from the \con-

stituent" N=2 algebras and is analogous to the N=2 algebra that arises in the bosonic string.
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where

ctot � cl + cg + cm = 6(Q2 � 1) + cm : (5.10)

Together with

A
�� = ic(Gm� +Gl� +

1

2
Gg�) + i(Q+

cm

6Q
)@(@�c);

Q� =
1

2
�c+

1

2
(Q+

cm

6Q
)@�;

Q+K = �1

2
c(Jm + Jl +

1

2
Jg) +

1

2
(Q+

cm

6Q
)(@�
 + @�c) +

1

2
k @c (5.11)

we thus see that the above-mentioned sub-algebra of the hidden, doubly twisted N =4

algebra is indeed realized in the topological string, with

k
+ = k

� = k : (5.12)

Note that due to the topological nature of the theory, the BRST operator
H
JvBRST is

nilpotent for any ctot, and thus there is, strictly speaking, no critical central charge for

the topological string. Nevertheless, the \critical" case ctot = 0 is distinguished in the

BRST algebra in that the level (5.9) of the s`(2) algebra vanishes and the s`(2) raising

generator A++ (5.8) decouples from the gravitational descendant, @
.

Note also that the similarity transformation U that rotates the topological string into

the matter picture [16] arises here naturally from a Kac-Moody current:

U = exp [
1

2�

I
dz A

��] : (5.13)

It is thus nothing but an inner automorphism of the doubly twisted N=4 superconformal

algebra.

Although the structure of the doubly twisted N =4 algebra seems to be super�cially

similar to what we found for the N =2 string, there is an important di�erence. We do

not get here enough fermions such as to form the non-linear version of the algebra, and

it is precisely the non-linear form that arises from Hamiltonian reduction of osp(4j2).
Therefore it is unclear at the moment how one can construct topological strings along

the lines that we presented in the previous sections. We will leave this problem for future

investigation.
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6 Conclusions

The presented results clearly point to a systematic treatment of crticial and non-crititcal

string theories. Indeed the structure revealed in the studied cases suggests that a very

large class of string theories could be obtained from those Hamiltonian reductions which

give rise to extensions of the N = 2 superconformal algebras. Such reductions correspond

to embeddings of s`(2j1) in super Lie algebra. In addition, the grading has to be chosen

in such a way that the realization obtained is consistent with the BRST structure, (1.1).

Though the complete classi�cation of sl(2j1) embeddings in Lie superalgebras has

been achieved [17], this program is not yet �nished. All examples studied so far have

as a common characteristic that in the decomposition of the adjoint representation of

the super Lie algebra in terms of irreducible representations of the embedded sl(2j1),
only typical representations with vanishing U(1) charge occur. Exactly for such cases

we believe that the presented techniques are su�cient to recover the non-critical string

theory. On the other hand, for generic sl(2j1) embeddings, non-trivial U(1) charges and

atypical representations can occur. At this moment it is not clear how to generalize the

methods developed in this paper to cover such cases. Further work in this direction is

under way.

Several other questions remain unanswered. We found a hidden, doubly twisted N = 4

structure in topological gravity. An obvious question is whether topological gravity can be

obtained from Hamiltonian reduction. This is a relevant question, as the construction of

extensions of topological gravity, such as topologicalW -gravity, turns out to be technically

extremely involved. A more systematic approach, based on Hamiltonian reduction would

greatly facilitate this task.
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A Conventions for osp(N j2)

We summarize our conventions for the current algebra of osp(N j2):

E
0(z)E0(w) =

�

8

1

(z � w)2
;

E
+(z)E�(w) =

�

4

1

(z � w)2
+

E0(w)

(z �w)
;

E
0(z)E�(w) = �1

2

E�(w)

(z � w)
;

J
m(z)Jn(w) = =

1

8

�mn

(z � w)2
� 1

4

p
2fmn

kJk(w)

(z � w)
;

E
0(z)j�k(w) = �1

4

j�k(w)

(z � w)
;

E
�(z)j�k(w) =

1

2

j�k(w)

(z � w)
;

J
m(z)j�k(w) =

1

4

p
2�mn

k j�n(w)

(z � w)
;

j
+m(z)j�n(w) =

�

8

�mn

(z � w)2
+

1

4

�mnE0(w)

(z �w)
+

1

4

p
2�mn

kJk(w)

(z � w)
;

j
�m(z)j�n(w) = �1

4

�mn :E�

(z � w)
: (A.1)

Here E0, E� denote the s`(2) part, Jm the so(N) part and j�k are the fermionic currents.

For the so(N) algebra we employ a double index notation where m stands for pq with

1 � p < q � N . The structure constants are given by fmn
k = [�m; �n] with �pq rs =

1p
2
(�pr�

q
s � �ps�

q
r). The metric used in our computations is

g+� = �2 ; g00 = �4 ; g+m�n = �4�mn ; gmn = �4�mn : (A.2)

B Superconformal algebras with N =3; 4

1. N=3

The N=3 superconformal algebra consists of the stress tensor, three supercharges,

an so(3) Kac Moody algebra at level k and an additional fermionic current F with
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spin 1

2
. All the �elds are primary with respect to the stress tensor. The non-

vanishing operator products are

G
a(z)Gb(w) =

2gabk

(z �w)3
+
�ab cK

c(w)

(z � w)2
+

2gab T (w) + 2�ab c @K
c(w)

(z � w)
;

K
a(z)Kb(w) =

�gabk
(z �w)2

+
�ab cK

c(w)

(z � w)
;

K
a(z)Gb(w) =

�F (w)
(z �w)2

+
�ab cG

c

(z � w)(w)
;

G
a(z)F (w) =

�Ka(w)

(z � w)
;

F (z)F (w) =
�k

(z �w)
: (B.1)

The components of the metric are g+� = 1 and g33 = 2. The central charge is given

by c = 3k. The fermion can be factorized by rede�ning the generators as follows:

~T = T � 1

2k
F@F ;

~Ga = G
a � 1

k
FK

a
: (B.2)

This then leads to the non-linear form of the algebra.

2. N=4

The large N = 4 superconformal Algebra consists of the stress tensor, four super-

charges, two commuting sl(2) Kac Moody algebras at di�erent levels k+; k�, four

fermionic currents with spin 1

2
and a U(1) current. All the �elds are primary, the

rest of the non-vanishing operator products are

Ga(z)Gb(w) =
2c

3

�ab

(z � w)3
+

2Mab(w)

(z � w)2
+

2T (w) �ab + @Mab(w)

(z � w)
;

(B.3)

A
�i(z)Ga(w) =

��i a
bGb(w)

z � w
�

2k�

k
��i a

bQb(w)

(z � w)2
;

A
�i(z)A�j(w) =

f ij kA
�k(w)

(z � w)
�

k�

2
�ij

(z �w)2
;

Qa(z)Gb(w) =
2(�+iab A

+

i (w)� �
�i
ab A

�
i (w)) + �abU(w)

(z � w)
;

A
�i(z)Qa(w) =

��i a
bQb(w)

(z � w)
;
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U(z)Ga(w) =
Qa(w)

(z � w)2
;

Qa(z)Qb(w) = �k
2

�ab

(z � w)
;

U(z)U(w) = �k
2 (z � w)2

; (B.4)

with central charge c = 6k+k�

k
; k = k+ + k�; and

Mab(z) = �4

k
(k��+iab A

+

i (z) + k
+
�
�i
ab A

�
i (z)): (B.5)

The index i takes the values f+;�; 3g and �ij and f ij k are de�ned as

�+� =
1

2
;

f
+�

3 = �2i;
f
3�

� = �i: (B.6)

The non zero values for �ab and �
�i
ab = ���iba with a; b running over

f+;�;+K;�Kg are given by

�+� =
1

2
; �+K�K =

1

2
;

�
�3
+� = � i

4
; �

�3
+K�K = � i

4
;

�
+�
++K =

i

2
; �

++

��K = � i
2
;

�
�+
�+K = � i

2
; �

��
+�K =

i

2
: (B.7)

To get the non-linear form, one factorizes the fermions and the U(1) current by

rede�ning the generators as follows:

~T = T +
1

k
(UU + @Q

a
Qa) ;

~Ga = Ga +
2

k
UGa � 2

3k2
�abcdQ

b
Q
c
Q
d +

4

k
Q
b(�+iba

~A+

i � �
�i
ba

~A�i )

~A�i = A
�i � 1

k
�
�i
abQ

a
Q
b
: (B.8)

The four index antisymmetric tensor is given by

�
abcd = �(4��iab�� i

cd � �
ac
�
bd + �

ad
�
bc) : (B.9)
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