1,083 research outputs found
Cranial neuralgias: from physiopathology to pharmacological treatment
Cranial neuralgias are paroxysmal painful disorders of the head characterised by some shared features such as unilaterality of symptoms, transience and recurrence of attacks, superficial and "shock-like" quality of pain and the presence of triggering factors. Although rare, these disorders must be promptly recognised as they harbour a relatively high risk for underlying compressive or inflammatory disease. Nevertheless, misdiagnosis is frequent. Trigeminal and glossopharyngeal neuralgias are sustained in most cases by a neurovascular conflict in the posterior fossa resulting in a hyperexcitability state of the trigeminal circuitry. If the aetiology of trigeminal neuralgia (TN) and other typical neuralgias must be brought back to the peripheral injury, their pathogenesis could involve central allodynic mechanisms, which, in patients with inter-critical pain, also engage the nociceptive neurons at the thalamic-cortical level. Currently available medical treatments for TN and other cranial neuralgias are reviewed
Gaia: The Astrometry Revolution
The power of micro-arcsecond (as) astrometry is about to be unleashed.
ESA's Gaia mission, now headed towards the end of the first year of routine
science operations, will soon fulfil its promise for revolutionary science in
countless aspects of Galactic astronomy and astrophysics. The potential of Gaia
position measurements for important contributions to the astrophysics of
planetary systems is huge. We focus here on the expectations for detection and
improved characterization of 'young' planetary systems in the neighborhood of
the Sun using a combination of Gaia as astrometry and direct imaging
techniques.Comment: 6 pages, 3 figures, to appear in the Proceedings of IAU Symposium 314
'Young Stars & Planets Near the Sun', held on May 11-15 2015 in Atlanta (GA),
USA (J. H. Kastner, B. Stelzer, & S. A. Metchev, eds.
High resolution imaging of young M-type stars of the solar neighborhood: Probing the existence of companions down to the mass of Jupiter
Context. High contrast imaging is a powerful technique to search for gas
giant planets and brown dwarfs orbiting at separation larger than several AU.
Around solar-type stars, giant planets are expected to form by core accretion
or by gravitational instability, but since core accretion is increasingly
difficult as the primary star becomes lighter, gravitational instability would
be the a probable formation scenario for yet-to-be-found distant giant planets
around a low-mass star. A systematic survey for such planets around M dwarfs
would therefore provide a direct test of the efficiency of gravitational
instability. Aims. We search for gas giant planets orbiting around late-type
stars and brown dwarfs of the solar neighborhood. Methods. We obtained deep
high resolution images of 16 targets with the adaptive optic system of VLT-NACO
in the Lp band, using direct imaging and angular differential imaging. This is
currently the largest and deepest survey for Jupiter-mass planets around
Mdwarfs. We developed and used an integrated reduction and analysis pipeline to
reduce the images and derive our 2D detection limits for each target. The
typical contrast achieved is about 9 magnitudes at 0.5" and 11 magnitudes
beyond 1". For each target we also determine the probability of detecting a
planet of a given mass at a given separation in our images. Results. We derived
accurate detection probabilities for planetary companions, taking into account
orbital projection effects, with in average more than 50% probability to detect
a 3MJup companion at 10AU and a 1.5MJup companion at 20AU, bringing strong
constraints on the existence of Jupiter-mass planets around this sample of
young M-dwarfs.Comment: Accepted for publication in A&
A survey of young, nearby, and dusty stars to understand the formation of wide-orbit giant planets
Direct imaging has confirmed the existence of substellar companions on wide
orbits. To understand the formation and evolution mechanisms of these
companions, the full population properties must be characterized. We aim at
detecting giant planet and/or brown dwarf companions around young, nearby, and
dusty stars. Our goal is also to provide statistics on the population of giant
planets at wide-orbits and discuss planet formation models. We report a deep
survey of 59 stars, members of young stellar associations. The observations
were conducted with VLT/NaCo at L'-band (3.8 micron). We used angular
differential imaging to reach optimal detection performance. A statistical
analysis of about 60 % of the young and southern A-F stars closer than 65 pc
allows us to derive the fraction of giant planets on wide orbits. We use
gravitational instability models and planet population synthesis models
following the core-accretion scenario to discuss the occurrence of these
companions. We resolve and characterize new visual binaries and do not detect
any new substellar companion. The survey's median detection performance reaches
contrasts of 10 mag at 0.5as and 11.5 mag at 1as. We find the occurrence of
planets to be between 10.8-24.8 % at 68 % confidence level assuming a uniform
distribution of planets in the interval 1-13 Mj and 1-1000 AU. Considering the
predictions of formation models, we set important constraints on the occurrence
of massive planets and brown dwarf companions that would have formed by GI. We
show that this mechanism favors the formation of rather massive clump (Mclump >
30 Mj) at wide (a > 40 AU) orbits which might evolve dynamically and/or
fragment. For the population of close-in giant planets that would have formed
by CA, our survey marginally explore physical separations (<20 AU) and cannot
constrain this population
Is idiopathic intracranial hypertension without papilledema a risk factor for migraine progression?
The association of chronic migraine (CM) with an idiopathic intracranial hypertension without papilledema (IIHWOP), although much more prevalent than expected in clinical series of CM sufferers, is not included among the risk factors for migraine progression. We discuss the available evidence supporting the existence of a pathogenetic link between CM and idiopathic intracranial hypertensive disorders and suggest a causative role for IIHWOP in migraine progression
Discovery of a probable 4-5 Jupiter-mass exoplanet to HD 95086 by direct-imaging
Direct imaging has just started the inventory of the population of gas giant
planets on wide-orbits around young stars in the solar neighborhood. Following
this approach, we carried out a deep imaging survey in the near-infrared using
VLT/NaCo to search for substellar companions. We report here the discovery in
L' (3.8 microns) images of a probable companion orbiting at 56 AU the young
(10-17 Myr), dusty, and early-type (A8) star HD 95086. This discovery is based
on observations with more than a year-time-lapse. Our first epoch clearly
revealed the source at 10 sigma while our second epoch lacked good observing
conditions hence yielding a 3 sigma detection. Various tests were thus made to
rule out possible artifacts. This recovery is consistent with the signal at the
first epoch but requires cleaner confirmation. Nevertheless, our astrometric
precision suggests the companion to be comoving with the star, with a 3 sigma
confidence level. The planetary nature of the source is reinforced by a
non-detection in Ks-band (2.18 microns) images according to its possible
extremely red Ks - L' color. Conversely, background contamination is rejected
with good confidence level. The luminosity yields a predicted mass of about
4-5MJup (at 10-17 Myr) using "hot-start" evolutionary models, making HD 95086 b
the exoplanet with the lowest mass ever imaged around a star.Comment: accepted for publication to APJ
Deep imaging survey of young, nearby austral stars: VLT/NACO near-infrared Lyot-coronographic observations
Context. High contrast and high angular resolution imaging is the optimal search technique for substellar companions to nearby stars at physical separations larger than typically 10 AU. Two distinct populations of substellar companions, brown dwarfs and planets, can be probed and characterized. As a result, fossile traces of processes of formation and evolution can be revealed by physical and orbital properties, both for individual systems and as an ensemble.
Aims. Since November 2002, we have conducted a large, deep imaging, survey of young, nearby associations of the southern hemisphere. Our goal is detection and characterization of substellar companions with projected separations in the range 10–500 AU. We have observed a sample of 88 stars, primarily G to M dwarfs, younger than 100 Myr, and within 100 pc of Earth.
Methods. The VLT/NACO adaptive optics instrument of the ESO Paranal Observatory was used to explore the faint circumstellar environment between typically 0.1 and 10". Diffraction-limited observations in H and K_s-band combined with Lyot-coronagraphy enabled us to reach primary star-companion brightness ratios as small as 10^(-6). The existence of planetary mass companions could therefore be probed. We used a standardized observing sequence to precisely measure the position and flux of all detected sources relative to their visual primary star. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects.
Results. We report the discovery of 17 new close (0.1–5.0") multiple systems. HIP 108195 AB and C (F1 III-M6), HIP 84642 AB (a~14 AU, K0-M5) and TWA22 AB (a~1.8 AU; M6-M6) are confirmed comoving systems. TWA22 AB is likely to be a rare astrometric calibrator that can be used to test evolutionary model predictions. Among our complete sample, a total of 65 targets were observed with deep coronagraphic imaging. About 240 faint companion candidates were detected around 36 stars. Follow-up observations with VLT or HST for 83% of these stars enabled us to identify a large fraction of background contaminants. Our latest results that pertain to the substellar companions to GSC 08047-00232, AB Pic and 2M1207 (confirmed during this survey and published earlier), are reviewed. Finally, a statistical analysis of our complete set of coronagraphic detection limits enables us to place constraints on the physical and orbital properties of giant planets between typically 20 and 150 AU
Continuous data assimilation for global numerical weather prediction
A new configuration of the European Centre for Medium-Range Weather Forecasts (ECMWF) incremental 4D-Var data assimilation (DA) system is introduced which builds upon the quasi-continuous DA concept proposed in the mid-1990s. Rather than working with a fixed set of observations, the new 4D-Var configuration exploits the near-continuous stream of incoming observations by introducing recently arrived observations at each outer loop iteration of the assimilation. This allows the analysis to benefit from more recent observations. Additionally, by decoupling the start time of the DA calculations from the observational data cut-off time, real-time forecasting applications can benefit from more expensive analysis configurations that previously could not have been considered. In this work we present results of a systematic comparison of the performance of a Continuous DA system against that of two more traditional baseline 4D-Var configurations. We show that the quality of the analysis produced by the new, more continuous configuration is comparable to that of a conventional baseline that has access to all of the observations in each of the outer loops, which is a configuration not feasible in real-time operational numerical weather prediction. For real-time forecasting applications, the Continuous DA framework allows configurations which clearly outperform the best available affordable non-continuous configuration. Continuous DA became operational at ECMWF in June 2019 and led to significant 2 to 3% reductions in medium-range forecast root mean square errors, which is roughly equivalent to 2-3 hr of additional predictive skill.Peer reviewe
- …