257 research outputs found

    Atomic alignment and Diagnostics of Magnetic Fields in Diffuse Media

    Full text link
    We continue our studies of atomic alignment in diffuse media, in particularly, in interstellar and circumstellar media, with the goal of developing new diagnostics of magnetic fields in these environments. We understand atomic alignment as alignment of atoms or ions in their ground state. Such atoms are sensitive to weak magnetic fields. In particular, we provide predictions of the polarization that arises from astrophysically important aligned atoms (ions) with fine structure of the ground level, namely, OI and SII and Ti II. Unlike our earlier papers which dealt with weak fields only, a substantial part of our current paper is devoted to the studies of atomic alignment when magnetic fields get strong enough to affect the emission from the excited level, i.e. with the regime when the magnetic splitting is comparable to the line-width. This is a regime of Hanle effect modified by the atomic alignment. Using an example of emission and absorption lines of SII ion we demonstrate how polarimetric studies can probe magnetic fields in circumstellar regions and accretion disks. In addition, we show that atomic alignment induced by anisotropic radiation can induce substantial variations of magnetic dipole transitions within the ground state, thus affecting abundance studies based on this emission. Moreover, the radio emission is polarized, provides a new way to study magnetic fields, e.g. at the epoch of Universe reionization.Comment: Minor changes, accepted to Ap

    Advanced Forward Modeling and Inversion of Stokes Profiles Resulting from the Joint Action of the Hanle and Zeeman Effects

    Full text link
    A big challenge in solar and stellar physics in the coming years will be to decipher the magnetism of the solar outer atmosphere (chromosphere and corona) along with its dynamic coupling with the magnetic fields of the underlying photosphere. To this end, it is important to develop rigorous diagnostic tools for the physical interpretation of spectropolarimetric observations in suitably chosen spectral lines. Here we present a computer program for the synthesis and inversion of Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects in some spectral lines of diagnostic interest, such as those of the He I 10830 A and D_3 multiplets. It is based on the quantum theory of spectral line polarization, which takes into account all the relevant physical mechanisms and ingredients (optical pumping, atomic level polarization, Zeeman, Paschen-Back and Hanle effects). The influence of radiative transfer on the emergent spectral line radiation is taken into account through a suitable slab model. The user can either calculate the emergent intensity and polarization for any given magnetic field vector or infer the dynamical and magnetic properties from the observed Stokes profiles via an efficient inversion algorithm based on global optimization methods. The reliability of the forward modeling and inversion code presented here is demonstrated through several applications, which range from the inference of the magnetic field vector in solar active regions to determining whether or not it is canopy-like in quiet chromospheric regions. This user-friendly diagnostic tool called "HAZEL" (from HAnle and ZEeman Light) is offered to the astrophysical community, with the hope that it will facilitate new advances in solar and stellar physics.Comment: 62 pages, 19 figures, 3 tables. Accepted for publication in Ap

    Pharmaceutical innovation, reference pricing and therapeutic classes

    Get PDF
    This paper is a first attempt to model the effects of reference pricing on the innovation effort of pharmaceutical firms. The model is based on a dynamic game involving three types of agents: pharmaceutical firms, consumers and a regulatory entity. The games includes research stages where the innovation efforts by the firms are determined and introductory stages where a price for a new medicament is fixed. We model the negotiation between the drug owner and the regulator to fix the price, first without legal constraint, second under the regime of reference pricing in therapeutic classes. We then solve the innovation game where the firms anticipate the results of the negotiation round on prices. We thus consider the effect of the therapeutic class regulation on both prices and the innovation pace. The final stage consists in calibrating the model with a small data on anti-statine in France and simulates the effect of the change in regulatory regime

    Magnetic Field Structures in a Facular Region Observed by THEMIS and Hinode

    Full text link
    The main objective of this paper is to build and compare vector magnetic maps obtained by two spectral polarimeters, i.e. THEMIS/MTR and Hinode SOT/SP, using two inversion codes (UNNOFIT and MELANIE) based on the Milne-Eddington solar atmosphere model. To this end, we used observations of a facular region within active region NOAA 10996 on 23 May 2008, and found consistent results concerning the field strength, azimuth and inclination distributions. Because SOT/SP is free from the seeing effect and has better spatial resolution, we were able to resolve small magnetic polarities with sizes of 1" to 2", and we could detect strong horizontal magnetic fields, which converge or diverge in negative or positive facular polarities. These findings support models which suggest the existence of small vertical flux tube bundles in faculae. A new method is proposed to get the relative formation heights of the multi-lines observed by MTR assuming the validity of a flux tube model for the faculae. We found that the Fe 1 6302.5 \AA line forms at a greater atmospheric height than the Fe 1 5250.2 \AA line.Comment: 20 pages, 9 figures, 3 tables, accepted for publication in Solar Physic

    Scattering polarization of hydrogen lines in the presence of turbulent electric fields

    Full text link
    We study the broadband polarization of hydrogen lines produced by scattering of radiation, in the presence of isotropic electric fields. In this paper, we focus on two distinct problems: a) the possibility of detecting the presence of turbulent electric fields by polarimetric methods, and b) the influence of such fields on the polarization due to a macroscopic, deterministic magnetic field. We found that isotropic electric fields decrease the degree of linear polarization in the scattered radiation, with respect to the zero-field case. On the other hand, a distribution of isotropic electric fields superimposed onto a deterministic magnetic field can generate a significant increase of the degree of magnetic-induced, net circular polarization. This phenomenon has important implications for the diagnostics of magnetic fields in plasmas using hydrogen lines, because of the ubiquitous presence of the Holtsmark, microscopic electric field from neighbouring ions. In particular, previous solar magnetographic studies of the Balmer lines of hydrogen may need to be revised because they neglected the effect of turbulent electric fields on the polarization signals. In this work, we give explicit results for the Lyman-alpha and Balmer-alpha lines.Comment: 15 pages, 6 figure

    3D evolution of a filament disappearance event observed by STEREO

    Full text link
    A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the southern hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories in particular by THEMIS. One day before the disappearance, Hα\alpha observations showed up and down flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4 degrees, showed quite different views of this untwisting flux rope in He II 304 \AA\ images. Here, we reconstruct the 3D geometry of the filament during its eruption phase using STEREO EUV He II 304 \AA\ images and find that the filament was highly inclined to the solar normal. The He II 304 \AA\ movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km s1^{-1}, during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe XII 195 \AA\ images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope

    The Hanle Effect in 1D, 2D and 3D

    Full text link
    This paper addresses the problem of scattering line polarization and the Hanle effect in one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) media for the case of a two-level model atom without lower-level polarization and assuming complete frequency redistribution. The theoretical framework chosen for its formulation is the QED theory of Landi Degl'Innocenti (1983), which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. The self-consistent values of these density-matrix elements is to be determined by solving jointly the kinetic and radiative transfer equations for the Stokes parameters. We show how to achieve this by generalizing to Non-LTE polarization transfer the Jacobi-based ALI method of Olson et al. (1986) and the iterative schemes based on Gauss-Seidel iteration of Trujillo Bueno and Fabiani Bendicho (1995). These methods essentially maintain the simplicity of the Lambda-iteration method, but their convergence rate is extremely high. Finally, some 1D and 2D model calculations are presented that illustrate the effect of horizontal atmospheric inhomogeneities on magnetic and non-magnetic resonance line polarization signals.Comment: 14 pages and 5 figure

    Polarization from aligned atoms as a diagnostics of circumstellar, AGN and interstellar magnetic fields: II. Atoms with Hyperfine Structure

    Full text link
    We show that atomic alignment presents a reliable way to study topology of astrophysical magnetic fields. The effect of atomic alignment arises from modulation of the relative population of the sublevels of atomic ground state pumped by anisotropic radiation flux. As such aligned atoms precess in the external magnetic field and this affects the properties of the polarized radiation arising from both scattering and absorption by the atoms. As the result the polarizations of emission and absorption lines depend on the 3D geometry of the magnetic field as well as the direction and anisotropy of incident radiation. We consider a subset of astrophysically important atoms with hyperfine structure. For emission lines we obtain the dependencies of the direction of linear polarization on the directions of magnetic field and the incident pumping radiation. For absorption lines we establish when the polarization is perpendicular and parallel to magnetic field. For both emission and absorption lines we find the dependence on the degree of polarization on the 3D geometry of magnetic field. We claim that atomic alignment provides a unique tool to study magnetic fields in circumstellar regions, AGN, interplanetary and interstellar medium. This tool allows studying of 3D topology of magnetic fields and establish other important astrophysical parameters. We consider polarization arising from both atoms in the steady state and also as they undergo individual scattering of photons. We exemplify the utility of atomic alignment for studies of astrophysical magnetic fields by considering a case of Na alignment in a comet wake.Comment: 23 pages, 20 figures, ApJ, in press, minor change

    Tangled Magnetic Fields in Solar Prominences

    Full text link
    Solar prominences are an important tool for studying the structure and evolution of the coronal magnetic field. Here we consider so-called "hedgerow" prominences, which consist of thin vertical threads. We explore the possibility that such prominences are supported by tangled magnetic fields. A variety of different approaches are used. First, the dynamics of plasma within a tangled field is considered. We find that the contorted shape of the flux tubes significantly reduces the flow velocity compared to the supersonic free fall that would occur in a straight vertical tube. Second, linear force-free models of tangled fields are developed, and the elastic response of such fields to gravitational forces is considered. We demonstrate that the prominence plasma can be supported by the magnetic pressure of a tangled field that pervades not only the observed dense threads but also their local surroundings. Tangled fields with field strengths of about 10 G are able to support prominence threads with observed hydrogen density of the order of 10^(11) cm^(-3). Finally, we suggest that the observed vertical threads are the result of Rayleigh-Taylor instability. Simulations of the density distribution within a prominence thread indicate that the peak density is much larger than the average density. We conclude that tangled fields provide a viable mechanism for magnetic support of hedgerow prominences.Comment: 14 pages (emulateapj style), 10 figures, ApJ, in pres
    corecore