1,300 research outputs found

    Meson correlation functions in a QCD plasma

    Full text link
    The temporal pseudoscalar meson correlation function in a QCD plasma is investigated in a range of temperatures exceeding TcT_c and yet of experimental interest. Only the flavour-singlet channel is considered and the imaginary time formalism is employed for the finite temperature calculations. The behaviour of the meson spectral function and of the temporal correlator is first studied in the HTL approximation, where one replaces the free thermal quark propagators with the HTL resummed ones. This procedure satisfactory describes the soft fermionic modes, but its application to the propagation of hard quarks is not reliable. An improved version of the so-called NLA scheme, which allows a better treatment of the hard fermionic modes, is then proposed. The impact of the improved NLA on the pseudoscalar temporal correlator is investigated.Comment: 35 pages, 15 figure

    DCC: Attractive Idea Seeks Serious Confirmation

    Full text link
    The theoretical ideas relevant for the physics of the disoriented chiral condensate (DCC) are reviewed.Comment: 18 pages LaTex, based on invited lecture given by A.Krzywicki at the workshop "Quark, plasma and beyond", Zif, Bielefeld, May 1996 ; a reference is correcte

    Quark number susceptibilities from HTL-resummed thermodynamics

    Get PDF
    We compute analytically the diagonal quark number susceptibilities for a quark-gluon plasma at finite temperature and zero chemical potential, and compare with recent lattice results. The calculation uses the approximately self-consistent resummation of hard thermal and dense loops that we have developed previously. For temperatures between 1.5 to 5 TcT_c, our results follow the same trend as the lattice data, but exceed them in magnitude by about 5-10%. We also compute the lowest order contribution, of order αs3log(1/αs)\alpha_s^3\log(1/\alpha_s), to the off-diagonal susceptibility. This contribution, which is not a part of our self-consistent calculation, is numerically small, but not small enough to be compatible with a recent lattice simulation.Comment: 13 pages, 5 figures, uses elsart.cls; v2: minor corrections; v3: sign in eq.(1) correcte

    Renormalized Finite Temperature phi^4 theory from the 2PI Effective Action

    Get PDF
    We present an analytical and numerical study of scalar phi^4 theory at finite temperature with a renormalized 2-loop truncation of the 2PI effective action.Comment: 4 pages. Presented at International Conference on Strong and Electroweak Matter (SEWM 2006), Upton, New York, 10-13 May 200

    Comparing different hard-thermal-loop approaches to quark number susceptibilities

    Full text link
    We compare our previously proposed hard-thermal-loop (HTL) resummed calculation of quark number susceptibilities using a self-consistent two-loop approximation to the quark density with a recent calculation of the same quantity at the one-loop level in a variant of HTL-screened perturbation theory. Besides pointing out conceptual problems with the latter approach, we show that it severely over-includes the leading-order interaction effects while including none of the plasmon term which after all is the reason to construct improved resummation schemes.Comment: 6 pages, 6 figures. Revised version to appear in Eur. J. Phys.

    Universal shocks in the Wishart random-matrix ensemble - a sequel

    Full text link
    We study the diffusion of complex Wishart matrices and derive a partial differential equation governing the behavior of the associated averaged characteristic polynomial. In the limit of large size matrices, the inverse Cole-Hopf transform of this polynomial obeys a nonlinear partial differential equation whose solutions exhibit shocks at the evolving edges of the eigenvalue spectrum. In a particular scenario one of those shocks hits the origin that plays the role of an impassable wall. To investigate the universal behavior in the vicinity of this wall, a critical point, we derive an integral representation for the averaged characteristic polynomial and study its asymptotic behavior. The result is a Bessoid function.Comment: 7 pages, 2 figure

    The thermodynamics of the quark-gluon plasma: Self-consistent resummations vs. lattice data

    Full text link
    We discuss a recent approach for overcoming the poor convergence of the perturbative expansion for the thermodynamic potential of QCD. This approach is based on self-consistent approximations which allow for a gauge-invariant and manifestly ultraviolet-finite resummation of the essential physics of the hard thermal/dense loops. The results thus obtained are in good agreement with available lattice data down to temperatures of about twice the critical temperature. Calculations for a plasma with finite quark density (i.e., with a non-zero chemical potential μ\mu) are no more difficult than at μ=0\mu=0.Comment: 4 pages LaTeX2e, contribution to the proceedings of the 15th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (QM 2001), Long Island, New York, January 15 - 20, 200

    Thermodynamics of the high-temperature quark-gluon plasma

    Full text link
    We review the various methods which have been employed recently to describe the thermodynamics of the high temperature quark-gluon plasma using weak coupling techniques, and we compare their results with those of most recent lattice gauge calculations. Many of the difficulties encountered with perturbation theory at finite temperature are in fact not specific to QCD but are present in any field theory at finite temperature and will be discussed first in the simple example of the scalar field theory. We discuss the merits and limitations of various techniques which have been used to go beyond perturbation theory in the soft sector, such as dimensional reduction, screened perturbation theory or hard-thermal-loop perturbation theory, and Phi-derivable approximations. In the last part of the review, we focus on the later, which lead to a remarkably simple expression for the entropy of the quark-gluon plasma. When complemented with further, physically motivated, approximations, this approach reproduces accurately the entropy obtained from lattice gauge calculations at temperatures above 2.5 T_c, where T_c is the deconfinement temperature. This calculation thus provides also support to the physical picture of the quark-gluon plasma as a gas of weakly interacting quasiparticles.Comment: Review for "Quark-Gluon Plasma 3", eds. R.C. Hwa and X.-N. Wang, World Scientific, Singapore. 63 pages, 21 figures. v2: minor corrections and 2 references adde
    corecore