70 research outputs found

    Dystrophin Is Required for the Normal Function of the Cardio-Protective KATP Channel in Cardiomyocytes

    Get PDF
    Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx), which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC). In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (KATP) complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including KATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm) is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of KATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the KATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective KATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients

    The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    Get PDF
    The original publication is available at http://www.jnrbm.com/content/10/1/12Includes bibliographyAbstract Background The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a genetic disease associated with an improper hypertrophic response. Results The coding regions of KCNE1, KCNE2, KCNE3, KCNE4, and KCNE5 were examined, by direct DNA sequencing, in a cohort of 93 unrelated HCM probands and 188 blood donor controls. Fifteen genetic variants, four previously unknown, were identified in the HCM probands. Eight variants were non-synonymous and one was located in the 3'UTR-region of KCNE4. No disease-causing mutations were found and no significant difference in the frequency of genetic variants was found between HCM probands and controls. Two variants of likely functional significance were found in controls only. Conclusions Mutations in KCNE genes are not a common cause of HCM and polymorphisms in these genes do not seem to be associated with a propensity to develop arrhythmiaPeer Reviewe

    Asymmetric Switching in a Homodimeric ABC Transporter: A Simulation Study

    Get PDF
    ABC transporters are a large family of membrane proteins involved in a variety of cellular processes, including multidrug and tumor resistance and ion channel regulation. Advances in the structural and functional understanding of ABC transporters have revealed that hydrolysis at the two canonical nucleotide-binding sites (NBSs) is co-operative and non-simultaneous. A conserved core architecture of bacterial and eukaryotic ABC exporters has been established, as exemplified by the crystal structure of the homodimeric multidrug exporter Sav1866. Currently, it is unclear how sequential ATP hydrolysis arises in a symmetric homodimeric transporter, since it implies at least transient asymmetry at the NBSs. We show by molecular dynamics simulation that the initially symmetric structure of Sav1866 readily undergoes asymmetric transitions at its NBSs in a pre-hydrolytic nucleotide configuration. MgATP-binding residues and a network of charged residues at the dimer interface are shown to form a sequence of putative molecular switches that allow ATP hydrolysis only at one NBS. We extend our findings to eukaryotic ABC exporters which often consist of two non-identical half-transporters, frequently with degeneracy substitutions at one of their two NBSs. Interestingly, many residues involved in asymmetric conformational switching in Sav1866 are substituted in degenerate eukaryotic NBS. This finding strengthens recent suggestions that the interplay of a consensus and a degenerate NBS in eukaroytic ABC proteins pre-determines the sequence of hydrolysis at the two NBSs

    Genetic Association Study Identifies HSPB7 as a Risk Gene for Idiopathic Dilated Cardiomyopathy

    Get PDF
    Dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP) were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39%) and idiopathic DCM (p = 1.06×10−6, OR = 0.67 [95% CI 0.57–0.79] for the minor allele T). Three more SNPs showed p < 2.21×10−5. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (n = 564, n = 981 controls, p = 2.07×10−3, OR = 0.79 [95% CI 0.67–0.92]), France 1 (n = 433 cases, n = 395 controls, p = 3.73×10−3, OR = 0.74 [95% CI 0.60–0.91]), and France 2 (n = 249 cases, n = 380 controls, p = 2.26×10−4, OR = 0.63 [95% CI 0.50–0.81]). The combined analysis of all four studies including a total of n = 1,910 cases and n = 3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (p = 5.28×10−13, OR = 0.72 [95% CI 0.65–0.78]). None of the other three SNPs showed significant results in the replication stage

    Foerderung beruflicher Handlungskompetenz im Berufsfeld Wirtschaft und Verwaltung Arbeitsberichte aus dem Schwerpunktprogramm 'Lehr-Lern-Prozesse in der kaufmaennischen Erstausbildung' der Deutschen Forschungsgemeinschaft; Workshop 1

    No full text
    Die Forschungsberichte geben mit ihren unterschiedlichen Fragestellungen einen Ueberblick ueber das Spektrum der aktuellen berufspaedagogischen Forschung zu Lehr-Lernprozessen in der kaufmaennischen Erstausbildung. Kremer/ Sloane gehen der Frage nach, zu welchen Effekten faecher- und lernortuebergreifender Unterricht fuehrt und wie diese erfasst werden koennen. Ziel des Projekts von Binder/ Hagmann/ Nenniger ist die Ausweitung der Bereitschaft und Faehigkeit zum selbstgesteuerten Lernen bei kaufmaennischen Auszubildenden. Diese Kompetenzen werden an beruflichen, d.h. oekonomischen und lebensweltlichen, d.h. nicht-oekonomischen Inhalten aufzubauen versucht. Die erreichten Lernergebnisse wurden mit dem dazu entwickelten Instrument zur Erfassung 'motivierten selbstgesteuerten Lernens in Schule und Betrieb (MOSLISB)' erfasst und analysiert. Aprea/ Ebner untersuchen, ob sich die grafische Darstellung eines Textes mit wirtschaftsberuflichem Inhalt auf das Verstehen, Behalten sowie auf den Transfer des so erworbenen Wissens auswirkt. Neff/ Gronke/ Niegemann untersuchen auf der Grundlage von laborexperimentellen Studien, ob sich die Lernergebnisse steigern lassen durch den Einsatz arbeitsanaloger Aufgaben als Bestandteil einer computerbasierten komplexen Lernumgebung. Brettschneider berichtet, wie im Rahmen der Fallstudienarbeit Entscheidungsprozesse in Schuelerkleingruppen verlaufen und auf welche Weise eine effektive Entscheidungsfindung unterstuetzt werden kann. Bienengraeber untersucht den Einfluss einzelner sozialer Bedingungen (Wertschaetzung, Konflikte, Kommunikation, Kooperation, Verantwortungszuweisung) fuer die Genese der moralischen Urteilsfaehigkeit bei kaufmaennischen Auszubildenden. (BIBB2)Available from IAB-93-2100-20 BK 430 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels.

    No full text
    Item does not contain fulltextTransduction of energetic signals into membrane electrical events governs vital cellular functions, ranging from hormone secretion and cytoprotection to appetite control and hair growth. Central to the regulation of such diverse cellular processes are the metabolism sensing ATP-sensitive K+ (K(ATP)) channels. However, the mechanism that communicates metabolic signals and integrates cellular energetics with K(ATP) channel-dependent membrane excitability remains elusive. Here, we identify that the response of K(ATP) channels to metabolic challenge is regulated by adenylate kinase phosphotransfer. Adenylate kinase associates with the K(ATP) channel complex, anchoring cellular phosphotransfer networks and facilitating delivery of mitochondrial signals to the membrane environment. Deletion of the adenylate kinase gene compromised nucleotide exchange at the channel site and impeded communication between mitochondria and K(ATP) channels, rendering cellular metabolic sensing defective. Assigning a signal processing role to adenylate kinase identifies a phosphorelay mechanism essential for efficient coupling of cellular energetics with K(ATP) channels and associated functions

    The A 3

    No full text

    Kir6.2 is required for adaptation to stress

    No full text
    Reaction to stress requires feedback adaptation of cellular functions to secure a response without distress, but the molecular order of this process is only partially understood. Here, we report a previously unrecognized regulatory element in the general adaptation syndrome. Kir6.2, the ion-conducting subunit of the metabolically responsive ATP-sensitive potassium (K(ATP)) channel, was mandatory for optimal adaptation capacity under stress. Genetic deletion of Kir6.2 disrupted K(ATP) channel-dependent adjustment of membrane excitability and calcium handling, compromising the enhancement of cardiac performance driven by sympathetic stimulation, a key mediator of the adaptation response. In the absence of Kir6.2, vigorous sympathetic challenge caused arrhythmia and sudden death, preventable by calcium-channel blockade. Thus, this vital function identifies a physiological role for K(ATP) channels in the heart
    • …
    corecore