335 research outputs found

    Thermodynamics of micellization of oppositely charged polymers

    Full text link
    The complexation of oppositely charged colloidal objects is considered in this paper as a thermodynamic micellization process where each kind of object needs the others to micellize. This requirement gives rise to quantitatively different behaviors than the so-called mixed-micellization where each specie can micellize separately. A simple model of the grand potential for micelles is proposed to corroborate the predictions of this general approach.Comment: 7 pages, 2 figures. Accepted for publication in Europhysics Letter

    Coarse-Grained Models of Biological Membranes within the Single Chain Mean Field Theory

    Full text link
    The Single Chain Mean Field theory is used to simulate the equilibrium structure of phospholipid membranes at the molecular level. Three levels of coarse-graining of DMPC phospholipid surfactants are present: the detailed 44-beads double tails model, the 10-beads double tails model and the minimal 3-beads model. We show that all three models are able to reproduce the essential equilibrium properties of the phospholipid bilayer, while the simplest 3-beads model is the fastest model which can describe adequately the thickness of the layer, the area per lipid and the rigidity of the membrane. The accuracy of the method in description of equilibrium structures of membranes compete with Monte Carlo simulations while the speed of computation and the mean field nature of the approach allows for straightforward applications to systems with great complexity.Comment: Accepted for publication in Soft Matte

    Bilayer Membrane in Confined Geometry: Interlayer Slide and Steric Repulsion

    Full text link
    We derived free energy functional of a bilayer lipid membrane from the first principles of elasticity theory. The model explicitly includes position-dependent mutual slide of monolayers and bending deformation. Our free energy functional of liquid-crystalline membrane allows for incompressibility of the membrane and vanishing of the in-plane shear modulus and obeys reflectional and rotational symmetries of the flat bilayer. Interlayer slide at the mid-plane of the membrane results in local difference of surface densities of the monolayers. The slide amplitude directly enters free energy via the strain tensor. For small bending deformations the ratio between bending modulus and area compression coefficient, Kb/KA, is proportional to the square of monolayer thickness, h. Using the functional we performed self-consistent calculation of steric potential acting on bilayer between parallel confining walls separated by distance 2d. We found that temperature-dependent curvature at the minimum of confining potential is enhanced four times for a bilayer with slide as compared with a unit bilayer. We also calculate viscous modes of bilayer membrane between confining walls. Pure bending of the membrane is investigated, which is decoupled from area dilation at small amplitudes. Three sources of viscous dissipation are considered: water and membrane viscosities and interlayer drag. Dispersion has two branches. Confinement between the walls modifies the bending mode with respect to membrane in bulk solution. Simultaneously, inter-layer slipping mode, damped by viscous drag, remains unchanged by confinement.Comment: 23 pages,3 figures, pd

    Flexible Lipid Bilayers in Implicit Solvent

    Full text link
    A minimalist simulation model for lipid bilayers is presented. Each lipid is represented by a flexible chain of beads in implicit solvent. The hydrophobic effect is mimicked through an intermolecular pair potential localized at the ``water''/hydrocarbon tail interface. This potential guarantees realistic interfacial tensions for lipids in a bilayer geometry. Lipids self assemble into bilayer structures that display fluidity and elastic properties consistent with experimental model membrane systems. Varying molecular flexibility allows for tuning of elastic moduli and area/molecule over a range of values seen in experimental systems.Comment: 5 pages, 5 figure

    Enveloping Sophisticated Tools into Process-Centered Environments

    Get PDF
    We present a tool integration strategy based on enveloping pre-existing tools without source code modifications or recompilation, and without assuming an extension language, application programming interface, or any other special capabilities on the part of the tool. This Black Box enveloping (or wrapping) idea has existed for a long time, but was previously restricted to relatively simple tools. We describe the design and implementation of, and experimentation with, a new Black Box enveloping facility intended for sophisticated tools --- with particular concern for the emerging class of groupware applications

    He Scattering from Compact Clusters and from Diffusion-Limited Aggregates on Surfaces: Observable Signatures of Structure

    Full text link
    The angular intensity distribution of He beams scattered from compact clusters and from diffusion limited aggregates, epitaxially grown on metal surfaces, is investigated theoretically. The purpose is twofold: to distinguish compact cluster structures from diffusion limited aggregates, and to find observable {\em signatures} that can characterize the compact clusters at the atomic level of detail. To simplify the collision dynamics, the study is carried out in the framework of the sudden approximation, which assumes that momentum changes perpendicular to the surface are large compared with momentum transfer due to surface corrugation. The diffusion limited aggregates on which the scattering calculations were done, were generated by kinetic Monte Carlo simulations. It is demonstrated, by focusing on the example of compact Pt Heptamers, that signatures of structure of compact clusters may indeed be extracted from the scattering distribution. These signatures enable both an experimental distinction between diffusion limited aggregates and compact clusters, and a determination of the cluster structure. The characteristics comprising the signatures are, to varying degrees, the Rainbow, Fraunhofer, specular and constructive interference peaks, all seen in the intensity distribution. It is also shown, how the distribution of adsorbate heights above the metal surface can be obtained by an analysis of the specular peak attenuation. The results contribute to establishing He scattering as a powerful tool in the investigation of surface disorder and epitaxial growth on surfaces, alongside with STM.Comment: 41 pages, 16 postscript figures. For more details see http://www.fh.huji.ac.il/~dan

    Performance of discrete heat engines and heat pumps in finite time

    Get PDF
    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.Comment: 45 pages LaTeX, 25 eps figure

    Calculation of the Phase Behavior of Lipids

    Full text link
    The self-assembly of monoacyl lipids in solution is studied employing a model in which the lipid's hydrocarbon tail is described within the Rotational Isomeric State framework and is attached to a simple hydrophilic head. Mean-field theory is employed, and the necessary partition function of a single lipid is obtained via a partial enumeration over a large sample of molecular conformations. The influence of the lipid architecture on the transition between the lamellar and inverted-hexagonal phases is calculated, and qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.
    • …
    corecore