11 research outputs found

    Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development

    Get PDF
    Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development

    Early Dysregulation of Cell Adhesion and Extracellular Matrix Pathways in Breast Cancer Progression

    No full text
    Proliferative breast lesions, such as simple ductal hyperplasia (SH) and atypical ductal hyperplasia (ADH), are candidate precursors to ductal carcinoma in situ (DCIS) and invasive cancer. To better understand the relationship of breast lesions to more advanced disease, we used microdissection and DNA microarrays to profile the gene expression of patient-matched histologically normal (HN), ADH, and DCIS from 12 patients with estrogen receptor positive sporadic breast cancer. SH were profiled from a subset of cases. We found 837 differentially expressed genes between DCIS-HN and 447 between ADH-HN, with >90% of the ADH-HN genes also present among the DCIS-HN genes. Only 61 genes were identified between ADH-DCIS. Expression differences were reproduced in an independent cohort of patient-matched lesions by quantitative real-time PCR. Many breast cancer-related genes and pathways were dysregulated in ADH and maintained in DCIS. Particularly, cell adhesion and extracellular matrix interactions were overrepresented. Focal adhesion was the top pathway in each gene set. We conclude that ADH and DCIS share highly similar gene expression and are distinct from HN. In contrast, SH appear more similar to HN. These data provide genetic evidence that ADH (but not SH) are often precursors to cancer and suggest cancer-related genetic changes, particularly adhesion and extracellular matrix pathways, are dysregulated before invasion and even before malignancy is apparent. These findings could lead to novel risk stratification, prevention, and treatment approaches

    Focal Adhesion Kinase-Related Proline-Rich Tyrosine Kinase 2 and Focal Adhesion Kinase Are Co-Overexpressed in Early-Stage and Invasive ErbB-2-Positive Breast Cancer and Cooperate for Breast Cancer Cell Tumorigenesis and Invasiveness

    No full text
    Early cancer cell migration and invasion of neighboring tissues are mediated by multiple events, including activation of focal adhesion signaling. Key regulators include the focal adhesion kinase (FAK) and FAK-related proline-rich tyrosine kinase 2 (Pyk2), whose distinct functions in cancer progression remain unclear. Here, we compared Pyk2 and FAK expression in breast cancer and their effects on ErbB-2-induced tumorigenesis and the potential therapeutic utility of targeting Pyk2 compared with FAK in preclinical models of breast cancer. Pyk2 is overexpressed in tissues from early and advanced breast cancers and overexpressed with both FAK and epidermal growth factor receptor-2 (ErbB-2) in a subset of breast cancer cases. Down-regulation of Pyk2 in ErbB-2-positive, FAK-proficient, and FAK-deficient cells reduced cell proliferation, which correlated with reduced mitogen-activated protein kinase (MAPK) activity. In contrast, Pyk2 silencing had little impact on cell migration and invasion. In vivo, Pyk2 down-regulation reduced primary tumor growth induced by a metastatic variant of ErbB-2-positive MDA 231 breast cancer cells but had little effect on lung metastases in contrast to FAK down-regulation. Dual reduction of Pyk2 and FAK expression resulted in strong inhibition of both primary tumor growth and lung metastases. Together, these data support the cooperative function of Pyk2 and FAK in breast cancer progression and suggest that dual inhibition of FAK and Pyk2 is an efficient therapeutic approach for targeting invasive breast cancer
    corecore