44 research outputs found

    Higher Order Integrability in Generalized Holonomy

    Get PDF
    Supersymmetric backgrounds in M-theory often involve four-form flux in addition to pure geometry. In such cases, the classification of supersymmetric vacua involves the notion of generalized holonomy taking values in SL(32,R), the Clifford group for eleven-dimensional spinors. Although previous investigations of generalized holonomy have focused on the curvature \Rm_{MN}(\Omega) of the generalized SL(32,R) connection \Omega_M, we demonstrate that this local information is incomplete, and that satisfying the higher order integrability conditions is an essential feature of generalized holonomy. We also show that, while this result differs from the case of ordinary Riemannian holonomy, it is nevertheless compatible with the Ambrose-Singer holonomy theorem.Comment: 19 pages, Late

    Generalized curvature and the equations of D=11 supergravity

    Full text link
    It is known that, for zero fermionic sector, the bosonic equations of Cremmer-Julia-Scherk eleven-dimensional supergravity can be collected in a compact expression which is a condition on the curvature of the generalized connection. Here we peresent the equation which collects all the bosonic equations of D=11 supergravity when the gravitino is nonvanishing.Comment: 8 pages, plain latex. A few numerical factors corrected. To appear in Phys. Lett.

    Metastability of R-Charged Black Holes

    Full text link
    The global stability of R-charged AdS black holes in a grand canonical ensemble is examined by eliminating the constraints from the action, but without solving the equations of motion, thereby constructing the reduced action of the system. The metastability of the system is found to set in at a critical value of the chemical potential which is conjugate to the R-charge. The relation among the small black hole, large black hole and the instability is discussed. The result is consistent with the metastability found in the AdS/CFT-conjectured dual field theory. The "renormalized" temperature of AdS black holes, which has been rather ad hoc, is suggested to be the boundary temperature in the sense of AdS/CFT correspondence. As a byproduct of the analysis, we find a more general solution of the theory and its properties are briefly discussed.Comment: 36 pages, 7 figures, v2 is the published version. the exposition is made slightly shorter and hopefully cleare

    Hydrodynamics from the Dp-brane

    Get PDF
    We complete the computation of viscous transport coefficients in the near horizon geometries that arise from a stack of black Dp-branes for p=2,...,6 in the decoupling limit. The main new result is the obtention of the bulk viscosity which, for all p, is found to be related to the speed of sound by the simple relation \zeta/\eta = -2(v_s^2-1/p). For completeness the shear viscosity is rederived from gravitational perturbations in the shear and scalar channels. We comment on technical issues like the counterterms needed, or the possible dependence on the conformal frame.Comment: 15 page

    Hamilton-Jacobi Counterterms for Einstein-Gauss-Bonnet Gravity

    Full text link
    The on-shell gravitational action and the boundary stress tensor are essential ingredients in the study of black hole thermodynamics. We employ the Hamilton-Jacobi method to calculate the boundary counterterms necessary to remove the divergences and allow the study of the thermodynamics of Einstein-Gauss-Bonnet black holes.Comment: 21 pages, LaTe

    Shear viscosity from R-charged AdS black holes

    Full text link
    We compute the shear viscosity in the supersymmetric Yang-Mills theory dual to the STU background. This is a thermal gauge theory with a chemical potential. The quotient of the shear viscosity over the entropy density exhibits no deviation from the well known result 1/4\pi.Comment: 9 pages, some references updated, abstract and some typos correcte

    Consistent reductions of IIB*/M* theory and de Sitter supergravity

    Full text link
    We construct consistent non-linear Kaluza Klein reduction ansatze for a subset of fields arising from the reduction of IIB* and M* theory on dS_5 x H^5 and dS_4 x AdS_7, respectively. These reductions yield four and five-dimensional de Sitter supergravities, albeit with wrong sign kinetic terms. We also demonstrate that the ansatze may be used to lift multi-centered de Sitter black hole solutions to ten and eleven dimensions. The lifted dS_5 black holes correspond to rotating E4-branes of IIB* theory.Comment: 27 pages, late

    Bubbling AdS Black Holes

    Get PDF
    We explore the non-BPS analog of `AdS bubbles', which are regular spherically symmetric 1/2 BPS geometries in type IIB supergravity. They have regular horizons and can be thought of as bubbling generalizations of non-extremal AdS black hole solutions in five-dimensional gauged supergravity. Due to the appearance of the Heun equation even at the linearized level, various approximation and numerical methods are needed in order to extract information about this system. We study how the vacuum expectation value and mass of a particular dimension two chiral primary operator depend on the temperature and chemical potential of the thermal Yang-Mills theory. In addition, the mass of the bubbling AdS black holes is computed. As is shown numerically, there are also non-BPS solitonic bubbles which are completely regular and arise from continuous deformations of BPS AdS bubbles.Comment: 37 pages, 2 figure
    corecore