2,432 research outputs found

    What\u27s Good for the Goose is Good for the Gander? Implicit Bias and Self-Concept Toward Honors Students

    Get PDF
    This study looked to evaluate the current research on peer relationships, perceived social competence, and honors status among college students, with the hope of bridging the gap in research on honors college students and friendship. Participants were college-aged students attending a local university who took an online Implicit Bias Test to see if they held any biases toward words relating to the honors label. Participants also rated their social competence as well as their relationship with their peers. Independent samples t-tests were used to examine the differences in honors and non-honors students\u27 perception of honors programs, peer relationships, and social competencies. Implicit Bias Test scores were measured using a D-score. Implications of findings for college students and programs are discussed

    Rethinking marginality, beyond traditional spatial imaginaries

    Get PDF

    Scaling theory of DNA confined in nanochannels and nanoslits

    Full text link
    A scaling analysis is presented of the statistics of long DNA confined in nanochannels and nanoslits. It is argued that there are several regimes in between the de Gennes and Odijk limits introduced long ago. The DNA chain folds back on itself giving rise to a global persistence length which may be very large owing to entropic deflection. Moreover, there is an orientational excluded-volume effect between the DNA segments imposed solely by the nanoconfinement. These two effects cause the chain statistics to be intricate leading to nontrivial power laws for the chain extension in the intermediate regimes. It is stressed that DNA confinement within nanochannels differs from that in nanoslits because the respective orientational excluded-volume effects are not the same.Comment: 5 pages, 1 figure Several corrections, some minor changes in the text and replacement of one referenc

    Rapid surfactant-free synthesis of Mg(OH)2 nanoplates and pseudomorphic dehydration to MgO

    Get PDF
    Magnesium hydroxide nanoplates ca. 50 nm in thickness can be prepared over minute timescales via hydrothermal synthesis in a multimode cavity (MMC) microwave reactor. This approach allows ca. 1 g of single-phase Mg(OH)2 to be synthesised in under 3 minutes without the requirement of surfactants or non-aqueous solvents. The hydroxide nanomaterial dehydrates at temperatures >200 K below that of the equivalent bulk material and can be utilised as a precursor for the pseudomorphic synthesis of nanoplates of MgO as investigated by TG-DTA-MS, XRD and SEM measurements. Equally, the pseudomorphic synthesis can be performed by irradiating the Mg(OH)2 nanomaterial with microwaves for 6 minutes to produce single phase MgO

    Localization in the Discrete Non-linear Schrodinger Equation and Geometric Properties of the Microcanonical Surface

    Get PDF
    It is well known that, if the initial conditions have sufficiently high energy density, the dynamics of the classical Discrete Non-Linear Schrodinger Equation (DNLSE) on a lattice shows a form of breaking of ergodicity, with a finite fraction of the total charge accumulating on a few sites and residing there for times that diverge quickly in the thermodynamic limit. In this paper we show that this kind of localization can be attributed to some geometric properties of the microcanonical potential energy surface, and that it can be associated to a phase transition in the lowest eigenvalue of the Laplacian on said surface. We also show that the approximation of considering the phase space motion on the potential energy surface only, with effective decoupling of the potential and kinetic partition functions, is justified in the large connectivity limit, or fully connected model. In this model we further observe a synchronization transition, with a synchronized phase at low temperatures

    Impact of 3-Cyanopropionic Acid Methyl Ester on the Electrochemical Performance of ZnMnâ‚‚Oâ‚„ as Negative Electrode for Li-Ion Batteries

    Get PDF
    Due to their high theoretical capacity, transition metal oxide compounds are promising electrode materials for lithium-ion batteries. However, one drawback is associated with relevant capacity fluctuations during cycling, widely observed in the literature. Such strong capacity variation can result in practical problems when positive and negative electrode materials have to be matched in a full cell. Herein, the study of ZnMn2O4 (ZMO) in a nonconventional electrolyte based on 3-cyanopropionic acid methyl ester (CPAME) solvent and LiPF6 salt is reported for the first time. Although ZMO in LiPF6/CPAME electrolyte displays a dramatic capacity decay during the first cycles, it shows promising cycling ability and a suppressed capacity fluctuation when vinylene carbonate (VC) is used as an additive to the CPAME-based electrolyte. To understand the nature of the solid electrolyte interphase (SEI), the electrochemical study is correlated to ex situ X-ray photoelectron spectroscopy (XPS)

    Automatic Segmentation of Posterior Pole Retinal Layers In Patients with Early Stage Glaucoma Using Spectral Domain Optical Coherence Tomography

    Get PDF
    Purpose: To measure Ganglion Cell Layer (GCL) and Retinal Nerve Fiber Layer (RNFL) thickness of the retinal posterior pole in patients with early stage primary open-angle glaucoma (POAG) using the new automatic segmentation technology of spectral domain optical coherence tomograph (SD-OCT). Methods: 37 clinical records of patients with early glaucoma (grade 1 to 2 according to the Glaucoma Staging System 2) and 40 age and sex-matched controls were considered in this case-control observational retrospective study. Automated segmentation of GCL and RNFL was performed in one randomly selected eye from the electronic OCT records of each participant using the new Spectralis SD-OCT segmentation technology (Heidelberg Engineering, Inc., Heidelberg, Germany). Thickness of different retinal layers was obtained from each Posterior Pole volumetric scan. Measurements of the peripapillary RNFL thickness (pRNFLt) were also obtained and then compared with those of posterior pole RNFL thickness (ppRNFLt). Results: Both GCL and RNFL were significantly thinner at the retinal posterior pole in the POAG group as compared to the control group (p<0,0001). Furthermore, pRNFLt was significantly thinner in the glaucoma group as opposed to the control group (p<0,0001). Measurements of pRNFLt were significantly correlated with those of the ppRNFLt (Pearson’s coefficient r=0.863). Conclusions: The new Spectralis SD-OCT automatic segmentation tool may be useful in evaluating structural damage in patients with early glaucoma, by providing complementary measurements to the clinical assessment of glaucoma that could be used in conjunction with other relevant parameters in the diagnosis and the evaluation of the progression of the disease

    Changes in insulin sensitivity in response to different modalities of exercise: a review of the evidence

    Get PDF
    Summary: Type 2 diabetes is an increasingly prevalent condition with complications including blindness and kidney failure. Evidence suggests that type 2 diabetes is associated with a sedentary lifestyle, with physical activity demonstrated to increase glucose uptake and improve glycaemic control. Proposed mechanisms for these effects include the maintenance and improvement of insulin sensitivity via increased glucose transporter type four production. The optimal mode, frequency, intensity and duration of exercise for the improvement of insulin sensitivity are however yet to be identified. We review the evidence from 34 published studies addressing the effects on glycaemic control and insulin sensitivity of aerobic exercise, resistance training and both combined. Effect sizes and confidence intervals are reported for each intervention and meta-analysis presented. The quality of the evidence is tentatively graded, and recommendations for best practice proposed
    • …
    corecore