3,014 research outputs found
Recent results and open questions on collective type phenomena from A-A to pp collisions
A review of the main results on the collective type expansion of the
compressed and hot fireball formed in heavy ion collisions and some remarks to
be considered when comparing multiplicity wise phenomena taking place in A-A,
p-A and pp collisions, are followed by a discussion of the experimental results
which seem to evidence collective type phenomena in pp collisions at
= 7 TeV at high charged particle multiplicity. Correlations among the kinetic
freeze-out temperature, the average transverse expansion velocity and its
profile, as a function of centrality and multiplicity, extracted from the fits
of experimental transverse momentum spectra with an expression inspired by
hydrodynamical models, estimates on Bjorken energy densities and perspectives
in selecting soft and close to azimuthal isotropic events in pp collisions are
presented.Comment: Lecture presented at CARPATHIAN SUMMER SCHOOL OF PHYSICS 2014, Exotic
Nuclei and Nuclear/Particle Astrophysics (V) "From nuclei to stars" July 13 -
26, 2014, Sinaia, Romani
Absolute calibration of the LOPES antenna system
Radio emission in extensive air showers arises from an interaction with the
geomagnetic field and is subject of theoretical studies. This radio emission
has advantages for the detection of high energy cosmic rays compared to
secondary particle or fluorescence measurement methods. Radio antennas like the
LOPES30 antenna system are suited to investigate this emission process by
detecting the radio pulses. The characteristic observable parameters like
electric field strength and pulse length require a calibration which was done
with a reference radio source resulting in an amplification factor representing
the system behavior in the environment of the KASCADE-Grande experiment.
Knowing the amplification factor and the gain of the LOPES antennas LOPES30 is
calibrated absolutely for systematic analyses of the radio emission.Comment: 5 pages, Proceedings of International Workshop on Acoustic and Radio
EeV Neutrino detection Activities: ARENA, May 17-19, 2005, DESY Zeuthe
Dissecting the knee - Air shower measurements with KASCADE
Recent results of the KASCADE air shower experiment are presented in order to
shed some light on the astrophysics of cosmic rays in the region of the knee in
the energy spectrum. The results include investigations of high-energy
interactions in the atmosphere, the analysis of the arrival directions of
cosmic rays, the determination of the mean logarithmic mass, and the unfolding
of energy spectra for elemental groups
Large scale cosmic-ray anisotropy with KASCADE
The results of an analysis of the large scale anisotropy of cosmic rays in
the PeV range are presented. The Rayleigh formalism is applied to the right
ascension distribution of extensive air showers measured by the KASCADE
experiment.The data set contains about 10^8 extensive air showers in the energy
range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right
ascension distributions in this energy range. This accounts for all showers as
well as for subsets containing showers induced by predominantly light
respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes
are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary
energy.Comment: accepted by The Astrophysical Journa
KASCADE: Astrophysical results and tests of hadronic interaction models
KASCADE is a multi-detector setup to get redundant information on single air
shower basis. The information is used to perform multiparameter analyses to
solve the threefold problem of the reconstruction of (i)the unknown primary
energy, (ii) the primary mass, and (iii) to quantify the characteristics of the
hadronic interactions in the air-shower development. In this talk recent
results of the KASCADE data analyses are summarized concerning cosmic ray
anisotropy studies, determination of flux spectra for different primary mass
groups, and approaches to test hadronic interaction models. Neither large scale
anisotropies nor point sources were found in the KASCADE data set. The energy
spectra of the light element groups result in a knee-like bending and a
steepening above the knee. The topology of the individual knee positions shows
a dependency on the primary particle. Though no hadronic interaction model is
fully able to describe the multi-parameter data of KASCADE consistently, the
more recent models or improved versions of older models reproduce the data
better than few years ago.Comment: to appear in Nucl. Phys. B (Proc. Suppl.), Proc. of the XIII
ISVHECRI, Pylos 2004 - with a better quality of the figure
Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons
The flux of cosmic-ray induced single hadrons near sea level has been
measured with the large hadron calorimeter of the KASCADE experiment. The
measurement corroborates former results obtained with detectors of smaller size
if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The
program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the
atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be
described with a power law parametrized as
dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV
region the proton flux compares well with the results from recent measurements
of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa
Radio Emission in Atmospheric Air Showers: First Measurements with LOPES-30
When Ultra High Energy Cosmic Rays interact with particles in the Earth's
atmosphere, they produce a shower of secondary particles propagating toward the
ground. LOPES-30 is an absolutely calibrated array of 30 dipole antennas
investigating the radio emission from these showers in detail and clarifying if
the technique is useful for largescale applications. LOPES-30 is co-located and
measures in coincidence with the air shower experiment KASCADE-Grande. Status
of LOPES-30 and first measurements are presented.Comment: Proceedings of ARENA 06, June 2006, University of Northumbria, U
The KASCADE-Grande Experiment and the LOPES Project
KASCADE-Grande is the extension of the multi-detector setup KASCADE to cover
a primary cosmic ray energy range from 100 TeV to 1 EeV. The enlarged EAS
experiment provides comprehensive observations of cosmic rays in the energy
region around the knee. Grande is an array of 700 x 700 sqm equipped with 37
plastic scintillator stations sensitive to measure energy deposits and arrival
times of air shower particles. LOPES is a small radio antenna array to operate
in conjunction with KASCADE-Grande in order to calibrate the radio emission
from cosmic ray air showers. Status and capabilities of the KASCADE-Grande
experiment and the LOPES project are presented.Comment: To appear in Nuclear Physics B, Proceedings Supplements, as part of
the volume for the CRIS 2004, Cosmic Ray International Seminar: GZK and
Surrounding
- …
