1,547 research outputs found

    How to determine an effective potential for a variable cosmological term

    Get PDF
    It is shown that if a variable cosmological term in the present Universe is described by a scalar field with minimal coupling to gravity and with some phenomenological self-interaction potential V(φ)V(\varphi), then this potential can be unambiguously determined from the following observational data: either from the behaviour of density perturbations in dustlike matter component as a function of redshift (given the Hubble constant additionally), or from the luminosity distance as a function of redshift (given the present density of dustlike matter in terms of the critical one).Comment: Latex, 7 pages, JETP Lett., in press, 199

    The Diffuse Gamma-Ray Background from Supernovae

    Get PDF
    The Cosmic Gamma-ray Background (CGB) in the MeV region is believed to be due to photons from radioactivity produced in SNe throughout the history of galaxies in the universe. In particular, gamma-ray line emission from the decay chain 56Ni-> 56Co->56Fe provides the dominant photon source. Although iron synthesis occurs in all types of SNe, the contribution to the CGB is dominated by SNIa events due to their higher photon escape probabilities. Estimates of the star formation history in the universe suggest a rapid increase by a factor \~ 10 from the present to a redshift z_p ~ 1.5, beyond which it either remains constant or decreases slowly. We integrate the observed star formation history to determine the CGB from the corresponding SN rate history. In addition to gamma-rays from short-lived radioactivity in SNIa and SNII/Ibc we also calculate the minor contributions from long-lived radioactivities (26Al, 44Ti, 60Co, and electron-positron pair annihilation). Although progenitor evolution for SNIa is not yet fully understood, various arguments suggest delays of order 1-2 Gy between star formation and the production of SNIa's. The effect of this delay on the CGB is discussed. We emphasize the value of gamma-ray observations of the CGB in the MeV range as an independent tool for studies of the cosmic star formation history. If the delay between star formation and SNIa activity exceeds 1 Gy substantially, and/or the peak of the cosmic star formation rate occurs at a redshift much larger than unity, the gamma-ray production of SNIa would be insufficient to explain the observed CGB. Alternatively, the cosmic star formation rate would have to be higher (by a factor 2-3) than commonly assumed, which is in accord with several upward revisions reported in the recent literature.Comment: Minor changes, 26 pages, 9 figures, Accepted by Ap

    Lensing-Induced Structure of Submillimeter Sources: Implications for the Microwave Background

    Get PDF
    We consider the effect of lensing by galaxy clusters on the angular distribution of submillimeter wavelength objects. While lensing does not change the total flux and number counts of submillimeter sources, it can affect the number counts and fluxes of flux-limited samples. Therefore imposing a flux cut on point sources not only reduces the overall Poisson noise, but imprints the correlations between lensing clusters on the unresolved flux distribution. Using a simple model, we quantify the lensing anisotropy induced in flux-limited samples and compare this to Poisson noise. We find that while the level of induced anisotropies on the scale of the cluster angular correlation length is comparable to Poisson noise for a slowly evolving cluster model, it is negligible for more realistic models of cluster evolution. Thus the removal of point sources is not expected to induce measurable structure in the microwave or far-infrared backgrounds.Comment: 22 pages, 9 figures, accepted to Astrophysical Journa

    The Age-Redshift Relation for Standard Cosmology

    Full text link
    We present compact, analytic expressions for the age-redshift relation τ(z)\tau(z) for standard Friedmann-Lema\^ \itre-Robertson-Walker (FLRW) cosmology. The new expressions are given in terms of incomplete Legendre elliptic integrals and evaluate much faster than by direct numerical integration.Comment: 13 pages, 3 figure

    The Bright SHARC Survey: The Cluster Catalog

    Get PDF
    We present the Bright SHARC (Serendipitous High-Redshift Archival ROSAT Cluster) Survey, which is an objective search for serendipitously detected extended X-ray sources in 460 deep ROSAT PSPC pointings. The Bright SHARC Survey covers an area of 178.6 sq.deg and has yielded 374 extended sources. We discuss the X-ray data reduction, the candidate selection and present results from our on-going optical follow-up campaign. The optical follow-up concentrates on the brightest 94 of the 374 extended sources and is now 97% complete. We have identified thirty-seven clusters of galaxies, for which we present redshifts and luminosities. The clusters span a redshift range of 0.0696<z<0.83 and a luminosity range of 0.065<Lx<8.3e44 erg/s [0.5-2.0 keV] (assuming Ho = 50 km/s/Mpc and qo=0.5). Twelve of the clusters have redshifts greater than z=0.3, eight of which are at luminosities brighter than Lx=3e44 erg/s. Seventeen of the 37 optically confirmed Bright SHARC clusters have not been listed in any previously published catalog. We also report the discovery of three candidate ``fossil groups'' of the kind proposed by Ponman et al. (1994).Comment: Minor revisions: References updated and typos corrected. Shortened by use of emulateapj.st

    Introducing BAX: a database for X-ray clusters and groups of galaxies

    Full text link
    We present BAX, Base de Donnees Amas de Galaxies X (http://webast.ast.obs-mip.fr/bax), a multi-wavelength database dedicated to X-ray clusters and groups of galaxies allowing detailed information retrieval. BAX is designed to support astronomical research by providing access to published measurements of the main physical quantities and to the related bibliographic references: basic data stored in the database are cluster/group identifiers, equatorial coordinates, redshift, flux, X-ray luminosity (in the ROSAT band) and temperature, and links to additional linked parameters (in X-rays, such as spatial profile parameters, as well as SZ parameters of the hot gas, lensing measurements,and data at other wavelengths, such as optical and radio). The clusters and groups in BAX can be queried by the basic parameters as well as the linked parameters or combinations of these. We expect BAX to become an important tool for the astronomical community. BAX will optimize various aspects of the scientific analysis of X-ray clusters and groups of galaxies, from proposal planning to data collection, interpretation and publication, from both ground based facilities like MEGACAM (CFHT), VIRMOS (VLT) and space missions like XMM-Newton, Chandra and Planck.Comment: Accepted for publication in Astronomy and Astrophysics Journal. Contains 4 pages and 1 figur

    Standardization, validation and reliability scale evaluation of happiness among students

    Get PDF
    Background and Objectives: Happiness is the highest level of positive emotion. Happiness is neurologically activated by a rapid decrease in nerve firing rate. Getting rid of physical pain, getting rid of worries, solving difficult problems, and winning an anxiety-provoking competition are examples of a pattern of reduced neurological arousal of happiness. Avoiding stressors and avoiding accelerating change is not possible. In such a situation, people can prepare themselves to effectively deal with stressful life situations that have already provided the possibility of well-being, mental and physical health. Therefore, recognizing the factors that lead to the well-being and mental health of individuals is of particular importance. Since the main purpose of mental well-being is to help all people achieve a fuller, happier life and to prevent mood, emotional and behavioral disorders, prevention of mental illness in order to create a healthy society is one of the main tasks of educational systems. Happiness is one of the most important and influential variables in human life. Happiness is a kind of meaning of life or one of its givers. The effect of happiness on life satisfaction is significant. The purpose of this study is to rebuild, validate, and standardize of the Argyle, Martin, and Crass land’s Oxford happiness scale (OHI). The scale consists of 29 items in terms of five areas of life satisfaction, self-esteem, well-being, mind satisfaction, and positive mood that have been made available to the participants. Methods: The research method is descriptive-survey based on R factor analysis. The statistical population of the study was 200 students of architecture in four universities in Tehran, selected by simple random sampling method. Findings: The results of this study indicate that in the Oxford happiness scale, argyle has five factors; self-respect, life satisfaction, mind satisfaction, well-being and positive mood, while in this study, the factors of hope, life satisfaction, well-being, positive mood and aesthetic sense have come to light and there are two differences: “the aesthetic sense” that is unique to the field of architecture and “the hope” is specific to for Iranian. Conclusion: Finally, a comparative study of research in Oxford questionnaire between 1999 and 2007 was conducted with a 95% and 96% fitness index ratio in 2019.   ===================================================================================== COPYRIGHTS  ©2020 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.  ====================================================================================

    Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    Get PDF
    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe(3)O(4) nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe(3)O(4) nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions. PACS: 7550Mw; 7575Cd; 8185Q

    The Evolution of X-ray Clusters of Galaxies

    Get PDF
    Considerable progress has been made over the last decade in the study of the evolutionary trends of the population of galaxy clusters in the Universe. In this review we focus on observations in the X-ray band. X-ray surveys with the ROSAT satellite, supplemented by follow-up studies with ASCA and Beppo-SAX, have allowed an assessment of the evolution of the space density of clusters out to z~1, and the evolution of the physical properties of the intra-cluster medium out to z~0.5. With the advent of Chandra and Newton-XMM, and their unprecedented sensitivity and angular resolution, these studies have been extended beyond redshift unity and have revealed the complexity of the thermodynamical structure of clusters. The properties of the intra-cluster gas are significantly affected by non-gravitational processes including star formation and Active Galactic Nucleus (AGN) activity. Convincing evidence has emerged for modest evolution of both the bulk of the X-ray cluster population and their thermodynamical properties since redshift unity. Such an observational scenario is consistent with hierarchical models of structure formation in a flat low density universe with Omega_m=0.3 and sigma_8=0.7-0.8 for the normalization of the power spectrum. Basic methodologies for construction of X-ray-selected cluster samples are reviewed and implications of cluster evolution for cosmological models are discussed.Comment: 40 pages, 15 figures. Full resolution figures can be downloaded from http://www.eso.org/~prosati/ARAA
    corecore