36 research outputs found

    Comparing Models of Evolution for Ordered and Disordered Proteins

    Get PDF
    Most models of protein evolution are based upon proteins that form relatively rigid 3D structures. A significant fraction of proteins, the so-called disordered proteins, do not form rigid 3D structures and sample a broad conformational ensemble. Disordered proteins do not typically maintain long-range interactions, so the constraints on their evolution should be different than ordered proteins. To test this hypothesis, we developed and compared models of evolution for disordered and ordered proteins. Substitution matrices were constructed using the sequences of putative homologs for sets of experimentally characterized disordered and ordered proteins. Separate matrices, at three levels of sequence similarity (>85%, 85ā€“60%, and 60ā€“40%), were inferred for each type of protein structure. The substitution matrices for disordered and ordered proteins differed significantly at each level of sequence similarity. The disordered matrices reflected a greater likelihood of evolutionary changes, relative to the ordered matrices, and these changes involved nonconservative substitutions. Glutamic acid and asparagine were interesting exceptions to this result. Important differences between the substitutions that are accepted in disordered proteins relative to ordered proteins were also identified. In general, disordered proteins have fewer evolutionary constraints than ordered proteins. However, some residues like tryptophan and tyrosine are highly conserved in disordered proteins. This is due to their important role in forming proteinā€“protein interfaces. Finally, the amino acid frequencies for disordered proteins, computed during the development of the matrices, were compared with amino acid frequencies for different categories of secondary structure in ordered proteins. The highest correlations were observed between the amino acid frequencies in disordered proteins and the solvent-exposed loops and turns of ordered proteins, supporting an emerging structural model for disordered proteins

    Ca2+ /S100 regulation of giant protein kinases

    No full text
    Protein phosphorylation by protein kinases plays a central regulatory role in cellular processes and these kinases are themselves tightly regulated(1). One common mechanism of regulation involves Ca2+-binding proteins (CaBP) such as calmodulin (CaM)(2). Here we report a Ca2+-effector mechanism for protein kinase activation by demonstrating the specific and >1,000-fold activation of the myosin-associated giant protein kinase twitchin by Ca2+/S100A1(2). S100A1(2) is a member of a large CaBP family that is implicated in various cellular processes, including cell growth, differentiation and motility, but whose molecular actions are largely unknown(3). The S100A1(2)-binding site is a part of the autoregulatory sequence positioned in the active site that is responsible for intrasteric autoinhibition of twitchin kinase; the mechanism of autoinhibition based on the crystal structures of two twitchin kinase fragments is described elsewhere(4). Ca2+/S100 represents a likely physiological activator for the entire family of giant protein kinases involved in muscle contractions and cytoskeletal structure(2,5-9)
    corecore