85 research outputs found

    Higher Loop Results for the Plaquette, Using the Clover and Overlap Actions

    Full text link
    We calculate the perturbative value of the free energy in QCD on the lattice. This quantity is directly related to the average plaquette. Our calculation is done to 3 loops using the clover action for fermions; the results are presented for arbitrary values of the clover coefficient, and for a wide range of fermion masses. In addition, we calculate the 2 loop result for the same quantity, using the overlap action.Comment: 3 pages, 1 figure. Presented at Lattice2004(improved

    The Lattice Free Energy of QCD with Clover Fermions, up to Three-Loops

    Full text link
    We calculate the perturbative value of the free energy in Lattice QCD, up to three loops. Our calculation is performed using Wilson gluons and the Sheikholeslami - Wolhert (clover) improved action for fermions. The free energy is directly related to the average plaquette. To carry out the calculation, we compute all relevant Feynman diagrams up to 3 loops, using a set of automated procedures in Mathematica; numerical evaluation of the resulting loop integrals is performed on finite lattice, with subsequent extrapolation to infinite size. The results are presented as a function of the fermion mass m, for any SU(N_c) gauge group, and for an arbitrary number of fermion flavors. In order to enable independent comparisons, we also provide the results on a per diagram basis, for a specific mass value.Comment: 13 pages, 5 figures, 8 table

    The Lattice Free Energy with Overlap Fermions: A Two-Loop Result

    Full text link
    We calculate the 2-loop partition function of QCD on the lattice, using the Wilson formulation for gluons and the overlap-Dirac operator for fermions. Direct by-products of our result are the 2-loop free energy and average plaquette. Our calculation serves also as a prototype for further higher loop calculations in the overlap formalism. We present our results as a function of a free parameter M0M_0 entering the overlap action; the dependence on the number of colors NN and fermionic flavors NfN_f is shown explicitly.Comment: 10 pages, 5 figures. Final version to appear in Physical Review D. A missing overall factor was inserted in Eq. 12; it affects also Eq. 1

    On the zero crossing of the three-gluon vertex

    Get PDF
    We report on new results on the infrared behaviour of the three-gluon vertex in quenched Quantum Chormodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.Comment: 6 pages, 4 figure

    Infrared regime of SU(2) with one adjoint Dirac flavor

    Get PDF
    SU(2) gauge theory with one Dirac flavour in the adjoint representation is investigated on a lattice. Initial results for the gluonic and mesonic spectrum, static potential from Wilson and Polyakov loops, and the anomalous dimension of the fermionic condensate from the Dirac mode number are presented. The results found are not consistent with conventional confining behaviour, instead tentatively pointing towards a theory lying within or very near the onset of the conformal window, with the anomalous dimension of the fermionic condensate in the range 0.9≲γ∗≲0.95. The implications of our work for building a viable theory of strongly interacting dynamics beyond the standard model are discussed

    Instanton liquid properties from lattice QCD

    Get PDF
    We examined the instanton contribution to the QCD configurations generated from lattice QCD for N-F = 0, N-F = 2 + 1 and NF = 2 + 1 + 1 dynamical quark flavors from two different and complementary approaches. First via the use of Gradient flow, we computed instanton liquid properties using an algorithm to localize instantons in the gauge field con figurations and studied their evolution with flow time. Then, the analysis of the running at low momenta of gluon Green\u27s functions serves as an independent confirmation of the instanton density which can also be derived without the use of the Gradient flow

    SO(2N) and SU(N) gauge theories in 2+1 dimensions

    Full text link
    We perform an exploratory investigation of how rapidly the physics of SO(2N) gauge theories approaches its N=oo limit. This question has recently become topical because SO(2N) gauge theories are orbifold equivalent to SU(N) gauge theories, but do not have a finite chemical potential sign problem. We consider only the pure gauge theory and, because of the inconvenient location of the lattice strong-to-weak coupling 'bulk' transition in 3+1 dimensions, we largely confine our numerical calculations to 2+1 dimensions. We discuss analytic expectations in both D=2+1 and D=3+1, show that the SO(6) and SU(4) spectra do indeed appear to be the same, and show that a number of mass ratios do indeed appear to agree in the large-N limit. In particular SO(6) and SU(3) gauge theories are quite similar except for the values of the string tension and coupling, both of which differences can be readily understood.Comment: 27 pages, 9 figure

    The Lorentz-invariant boundary action of the confining string and its universal contribution to the inter-quark potential

    Full text link
    We study the boundary contribution to the low energy effective action of the open string describing the confining flux tube in gauge theories. The form of the boundary terms is strongly constrained by the requirement of Lorentz symmetry, which is spontaneously broken by the formation of a long confining flux tube in the vacuum. Writing the boundary action as an expansion in the derivatives of the Nambu-Goldstone modes describing the transverse fluctuations of the string, we single out and put in a closed form the first few Lorentz invariant boundary terms. We also evaluate the leading deviation from the Nambu-Goto string produced by the boundary action on the vacuum expectation value of the Wilson loop and we test this prediction in the 3d Ising gauge model. Our simulation attains a level of precision which is sufficient to test the contribution of this term.Comment: 17 pages, 5 figures, LateX 2e. V2: Final version published on JHEP. Fixed typos in eq.s 2.2, 2.3, 3.7, 3.8, A.4. Extended explanation of the procedures used in sec 2 to determine the possible boundary terms up to field redefinitions and of the procedure used in sec 4 to take the continuum limit. V3: typos corrected in eq.s (4.3) (4.5) and (4.6), acknowledgements adde

    Linear broadening of the confining string in Yang-Mills theory at low temperature

    Get PDF
    The logarithmic broadening predicted by the systematic low-energy effective field theory for the confining string has recently been verified in numerical simulations of (2+1)-d SU(2) lattice Yang-Mills theory at zero temperature. The same effective theory predicts linear broadening of the string at low non-zero temperature. In this paper, we verify this prediction by comparison with very precise Monte Carlo data. The comparison involves no additional adjustable parameters, because the low-energy constants of the effective theory have already been fixed at zero temperature. It yields very good agreement between the underlying Yang-Mills theory and the effective string theory.Comment: 10 pages, 3 figures. Version published in JHEP; improved figures 1 and
    corecore