
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

Phys. Rev. D

                              

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa21588

_____________________________________________________________

 
Paper:

Athenodorou, A., Bennett, E., Bergner, G. & Lucini, B. The infrared regime of SU(2) with one adjoint Dirac flavour.

Phys. Rev. D

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/78854504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa21588
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 
The infrared regime of SU(2) with one adjoint Dirac flavour
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SU(2) gauge theory with one Dirac flavour in the adjoint representation is investigated on a
lattice. Initial results for the gluonic and mesonic spectrum, static potential from Wilson and
Polyakov loops, and the anomalous dimension of the fermionic condensate from the Dirac mode
number are presented. The results found are not consistent with conventional confining behaviour,
instead tentatively pointing towards a theory lying within or very near the onset of the conformal
window, with the anomalous dimension of the fermionic condensate in the range 0.9 <∼ γ∗ <∼ 0.95.
The implications of our work for building a viable theory of strongly interacting dynamics beyond
the standard model are discussed.

I. INTRODUCTION

Even after the recent experimental identification of the
Higgs particle [1, 2], the existence of a new fundamental
interaction of which the Higgs sector is the low energy
manifestation is still an open problem. Among the pro-
posed possibilities, novel strong dynamics [3–7] is still a
good candidate for a possible fundamental mechanism of
electroweak symmetry breaking. It is generally believed
that this new strong interaction is able to explain the ob-
served electroweak symmetry breaking phenomenology if
the following three conditions are met: (1) the theory
must be near the onset of the conformal window; (2)
the anomalous dimension of the chiral condensate must
be of order one; and (3) a parametrically light scalar
(the would-be Higgs boson) must be in the spectrum.
The first two conditions [8, 9] are needed for compatibil-
ity with electroweak precision data [10], while the third
condition is determined by the direct observation of the
Higgs boson and no other previously unknown nearby
state. Until very recently, even the possible existence
of a strongly interacting quantum field theory for which
any of those conditions arose was unclear. In the last few
years, much progress has been achieved on these theoret-
ical questions, thanks to a combination of methods and
techniques. A crucial role has been played by numeri-
cal investigations using lattice techniques, which—among
other results—have pinned down an example of a gauge
theory in the conformal window, namely SU(2) gauge
theory with two adjoint Dirac flavours [11–19] (see [20–
23] for earlier simulations of the model). Although con-
formal strong dynamics can still explain electroweak sym-
metry breaking, an anomalous dimension around one is
required [24]. This condition rules out a possible phe-
nomenological role played by SU(2) with two adjoint
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Dirac flavours in its simplest version: in fact, the most
recent measurements of the anomalous dimension γ? for
this model give γ? = 0.38(2) [25], which is well below the
acceptable value. With the possible exception of SU(3)
with eight flavours [26], whose infrared behaviour needs
to be better explored, all other candidate near-conformal
theories studied so far have an anomalous dimension that
is too small (see [27, 28] for recent overviews of lattice
calculations).

At this stage, it is a fundamental problem to under-
stand whether large anomalous dimensions can arise in
the context of conformal or near-conformal gauge the-
ories. Although the anomalous dimension is small at
the perturbative zeros of the beta function, large anoma-
lous dimensions might arise near or at the lower end of
the conformal window. Whether these conjectured large
anomalous dimensions arise is a crucial question not only
for building realistic models of electroweak symmetry
breaking based on a novel strong interaction, but also in
the more general context of the physics of non-Abelian
gauge theories. As mentioned above, for SU(2) gauge
theories with adjoint Dirac fermions, lattice studies show
that the model with two flavours is infrared conformal
with a small anomalous dimension. Hence, a remaining
potential way to observe a large anomalous dimension is
to consider the case of a single Dirac flavour, or equiva-
lently two Majorana (or Weyl) fermions.

Analytically, this theory could be seen as the large
scalar mass limit of N = 2 super Yang–Mills with gauge
group SU(2), with supersymmetry completely broken by
a non-zero mass term for the scalar. Despite the ex-
istence of an interpolating parameter (in this specific
case, the mass of the scalar) confinement in N = 2
super Yang–Mills theory does not trivially imply con-
finement in the limit in which the scalar decouples. In
N = 2 super Yang–Mills, confinement is known to arise
through the dual superconductor mechanism resulting
from magnetic monopole condensation [29]. However,
this mechanism does not immediately generalise to the
non-supersymmetric case, since non-trivial effects (e.g.
the fate of the monopoles when decoupling the scalar) en-
ter the interpolating theory. Exploratory lattice studies
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exist for SU(N) gauge theory with a single adjoint Dirac
flavour in the large-N limit [30–32]. These works, which
exploit large-N volume reduction, do not give yet a clear
picture of the infrared behaviour of the theory. In ad-
dition, although perturbatively the N -dependence of the
β-function of theories with adjoint fermions is mild [33],
in principle the results of those studies might not trans-
late immediately to the model with two colors.

In this work, we present a first-principles investigation
of the model using numerical Monte Carlo studies of the
theory discretised on a spacetime lattice. The central
result of our work is that the infrared regime of the sys-
tem is compatible with a conformal or near-conformal be-
haviour, but not with a conventional QCD-like scenario
in which chiral symmetry breaking takes place. Further-
more, the anomalous dimension (measured with two in-
dependent methods) turns out to be 0.925(25).

The rest of the paper is organised as follow. In Sect. II
we present the model and the setup of our numerical in-
vestigations. Numerical results will then be presented in
Sect. III. Sect. IV discusses the implications of our inves-
tigation and possible directions of future studies. Finally,
a summary will be presented in Sec. V. Some preliminary
results were already presented in [34].

II. THE MODEL

We consider an SU(2) gauge theory with a single Dirac
flavour in the adjoint representation with mass m. Even-
tually, we would be interested in understanding the prop-
erties of the theory in the massless limit; however, numer-
ical simulations require a non-zero fermion mass. Hence,
we deform the theory with a small fermion mass, and
study how the system approaches the massless limit. We
stress from the outset that regardless of the phase of the
theory at zero fermion mass, with a finite mass term chi-
ral symmetry is always broken, since the mass is a rele-
vant direction for the renormalization group trajectory.
The expectations are that if chiral symmetry is broken
in the massless limit, the response of the model to a
small varying mass will be described by chiral perturba-
tion theory, while if the theory is conformal the data will
be in accord with the predictions derived from a mass-
deformed conformal gauge theory. A third possibility is
that the system is in the confined phase, but close to
the onset of the conformal window. In this case, it will
show mass-deformed conformal behaviour in an interme-
diate energy regime between a chiral symmetry break-
ing scale ΛIR and the ultraviolet perturbative scale ΛUV,
while chiral perturbation theory will correctly describe
the theory for energies below ΛIR. The latter possibility,
referred commonly as near-conformality or walking be-
haviour, would be phenomenologically interesting, since
theories near the onset of the conformal window are rele-
vant for gaining an understanding of strongly interacting
dynamics beyond the standard model as the mechanism
of electroweak symmetry breaking.

In the following subsections, we describe the field con-
tent of the theory, the chiral symmetry breaking pattern,
and the resulting spectrum.

A. Field content

In Minkowskian space, the Lagrangian of the system
is given by

L = ψ(x)
(
i /D −m

)
ψ(x)− 1

2
Tr (Gµν(x)Gµν(x)) , (1)

where /D = (∂µ + igAµ(x)) γµ, γµ are the Dirac matrices,
Aµ(x) =

∑
a T

aAaµ(x) with a = 1, 2, 3, and the Ta are
the generators of SU(2) in the adjoint representation (i.e.
the generators of SO(3)). Gµν = ∂µAν(x) − ∂νAµ(x) +
ig[Aµ(x), Aν(x)], with g the gauge coupling of the theory,
is the field tensor, and the trace is taken over the gauge
group. Our notations for the Dirac algebra matrices and
derived symmetry operators are reported in Appendix A.

Since the theory contains a single (Dirac) flavour, de-
scribed by the spinor ψ(x), at first sight the flavour struc-
ture of Eq. (1) would seem trivial. However, since the ad-
joint representation is real, it does not mix the real and
the imaginary part of the Dirac spinor. More explicitly,
if C is the Dirac matrix implementing charge conjuga-
tion, we can decompose the Dirac spinor in Majorana
components

ξ+ =
ψ + Cψ

T

√
2

, ξ− =
ψ − CψT

√
2i

, (2)

such that

ψ =
1√
2

(ξ+ + iξ−) , (3)

with both ξ+ and ξ− being invariant under charge con-
jugation symmetry by construction. Eq. (1) can now be
rewritten as

L =
1

2

∑
k

ξ̄k(x)
(
i /D −m

)
ξk(x)− 1

2
Tr (Gµν(x)Gµν(x)) ,(4)

where k = +,−. This flavour structure (in terms of the
Majorana components) gives rise to a non-trivial chiral
symmetry breaking pattern.

B. Chiral symmetry breaking pattern

In the notation usually applied in considerations of su-
persymmetry, the fermion part of the Lagrangian is writ-
ten as∑

k

[
(ζ̄k)α̇(σ̄µ)α̇βDµ(ζk)β +

m

2
((ζk)α(ζk)α + h.c.)

]
=
∑
k

[
ζ†kσ̄

µDµζk +
m

2
(ζTk ε

Tζk + h.c.)
]
, (5)
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with α, β = 1, 2 spin indices1, Majorana spinors ζk in the
Weyl representation

ξk =

(
ζ
εζ∗

)
k

=

(
ζα
ζ̄α̇

)
k

, (6)

and ε = iσ2. The lower component of the Majorana
spinor can be derived from the upper one using the above
expression. Therefore we can ignore the lower compo-
nents and form a 4Nf component vector out of the two
upper Weyl components of each Majorana flavour, for
Nf = 1 we get

η =

(
ζ1
ζ2

)
. (7)

In the zero mass limit the action has a U(1)A⊗SU(2Nf)
symmetry. The SU(2Nf) part rotates the upper and
lower two components of η into each other. The U(1)A
part is broken by the anomaly down to a discrete Z2Nc

.
The remaining Z2Nc ⊗ SU(2Nf) is subject to a sponta-
neous symmetry breaking if there is a non-zero expec-
tation value of the fermion condensate. The condensate
and the fermion mass term are invariant under the sub-
group Z2⊗SO(2Nf). This is the remaining exact symme-
try group if there is a spontaneous symmetry breaking.
Therefore, the chiral symmetry breaking pattern is

SU(2Nf) 7→ SO(2Nf) . (8)

Hence, if chiral symmetry is spontaneously broken, there
are two Goldstone bosons in this model, corresponding
to the two generators of the broken part of the symme-
try. In the present case of Nf = 1 the complete flavour
symmetry SU(2) has generators σi/2. In order to mark
the difference with the σi acting on the two indices of
the Weyl spinor, we call the generators in flavour space
τi = σi. The unbroken SO(2) is generated by τ2/2 = σ2/2
and is equivalent to U(1).

We want to arrive at a diagonal representation of the
unbroken symmetry. Therefore we apply the following
unitary transformation on η

χ =
1√
2

(
1 i
i 1

)
η =

1√
2

(1 + iτ1)η =

(
χ1

χ2

)
(9)

= PLψ + PR(−iC)ψ∗ =

(
ψL

−σ2ψ∗R

)
. (10)

The PR and PL are the projectors on the left handed
(ψL) and right handed (ψR) part of the Dirac spinor.
The advantage of this transformation is that the unbro-
ken generator is now the diagonal τ3/2 and the unbroken
SO(2) subgroup can be rewritten as

U = cosα+ iτ3 sinα = eiατ3 . (11)

1 We have made use of the dotted-undotted notation commonly
found in supersymmetry, for which we refer to the specialised
literature.

In the Majorana formulation, there is no U(1) symme-
try for each of the two Majorana flavours and hence
one would naturally relate the unbroken symmetry to
the isospin in QCD. In the Dirac notation the unbroken
symmetry is, however, the U(1)V of charge conservation.
Therefore in the following we refer to it as baryon sym-
metry. Hence, in addition to parity, the baryon charge
related to the unbroken part of the chiral symmetry can
be used to classify the spectrum of the theory in the
broken phase. At this point, it is worth stressing again
that chiral symmetry breaking is expected to arise as a
soft breaking at finite fermion mass, independently of the
phase of the massless theory.

While the residual symmetry is diagonal, in this basis
parity is expressed in terms of a combination of charge
conjugation (σ2) and flavour rotation (τ2). In fact, the
action of parity in the original basis

ψ(t, ~x) 7→ γ0ψ(t,−~x) , (12)

ψ(t, ~x) 7→ ψ(t,−~x)γ0 , (13)

determines the transformations

χ(t, ~x) 7→ iσ2τ2χ
∗(t,−~x) , (14)

χ†(t, ~x) 7→ −χT(t,−~x)iσ2τ2 . (15)

In order to clarify the notation, we derive explicitly the
chiral symmetry breaking pattern directly in this basis.
The chiral symmetry group SU(2) commutes with the
parity transformation, since for U ∈ SU(2)

U(iτ2) = (iτ2)U∗ . (16)

The chiral condensate represented in the different bases
of flavour and Dirac space has the following form

ψψ =
1

2

∑
k

(ζTk ε
Tζk + h.c.) (17)

=
1

2
(ηTεTη + h.c.) (18)

= ψ†LψR + ψ†RψL (19)

= χ†1σ2χ
∗
2 + χT

2 σχ1 (20)

=
1

2

(
χTτ1σ2χ+ χ†τ1σ2χ

∗) . (21)

From the last line, one can see that when the degrees of
freedom are chosen to be χ and χ†, the chiral condensate
is left invariant under the subgroup of U matrices that
satisfy

UTτ1U = τ1 , (22)

which is the SO(2) subgroup generated by τ3, Eq. (11).
Note that the symmetry breaking pattern shown here

is used in [35] to derive a partially quenched chiral per-
turbation theory for supersymmetric Yang–Mills theory2.

2 We remark that [35] uses a different convention on parity. See
Appendix B for a brief discussion of the two conventions.
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The analysis relies on the small mass of the Goldstone
bosons compared to the other states in the theory. This
needs to be confronted with our results: in a conformal
or near-conformal scenario the theory develops no rele-
vant intrinsic mass scale and the expected hierarchy of
masses is lost.

C. The spectrum

In order to understand the phase of the theory from
the point of view of the chiral symmetry, we focus our
attention on bilinear fermionic operators, which can be
seen as creation and annihilation operators of physical
states that play a crucial role in establishing the chiral
properties of the system.

The bilinear fermionic operators considered in this
study are shown in Tab. I. For convenience, they are rep-
resented in the Dirac notation (“Dirac bilinears”) and in
the Majorana notation (“Majorana bilinears”). For the
latter case, we introduce the naming convention

Olk(Γ) = ξ̄lΓξk , (23)

where the ξ are the two Majorana flavours (labeled by
k, l = +,−) and Γ is a Dirac matrix or a product of
Dirac matrices. Both the Majorana and the Dirac form
has some advantage: the Dirac representation allows us
to identify easily the spin quantum numbers (reported
in column “Spin”) and the parity, while the Majorana
notation exposes the flavour structure and bridges with
the terminology often used in supersymmetry. Straight-
forward algebra enables one to obtain the expression in
one notation given the expression in the other. For the
sake of simplicity, we have omitted the Weyl notation,
which is particularly suited for the SU(2) quantum num-
bers. The Weyl notation can be easily obtained from the
Dirac notation. For instance, one finds that

1

2
(ψTCγ5γ0ψ + ψ†Cγ5γ0ψ

∗) = χ†τ2χ , (24)

i.e. the Weyl bilinear χ†τ2χ, transforming under the 3+

representation of SU(2)P , is half the sum of the Dirac
bilinears ψTCγ5γ0ψ and ψ†Cγ5γ0ψ

∗, both in the irre-
duciple representation 3+ of the original flavour group,
but carrying baryon charge +2 and −2 respectively.

As usual, masses are extracted by looking at the large-
distance exponential decay of correlators between oper-
ators with the same quantum numbers. For fermionic
bound states, we are interested in the U(1)P quantum
numbers. When expressing the relevant correlators in
the original Dirac notation, we use the conventional lan-
guage of Lattice QCD. In particular, the words singlet
and triplet do not refer to a QCD-like isospin symme-
try, which is not defined in this theory. Here they stand
for whether fermion disconnected diagrams need to be
evaluated (singlet case) or not (as it happens for the
triplet). These contributions might appear in different
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cases than what one expects from QCD. For instance, to
obtain a pseudoscalar meson in our theory it is, as in one
flavour QCD, unavoidable to compute disconnected con-
tributions. The terminology is further discussed in Ap-
pendix C. The correlators with the naming convention
inherited from QCD that are needed to compute masses
in a given channel in terms of the single Dirac flavour are
indicated in the last column of Tab. I. The naming of the
states (column “Name”), which will be used as a handy
reference in the following, is instead derived from the
U(1) quantum numbers, which characterise the physical
states. In particular, 2 indicates the baryon with charge
q = 2, −2 the antibaryon with charge q = −2 and zero
the scalar/vector meson (or pseudoscalar/pseudovector
meson, if the parity is negative)3.

As mentioned above, the SU(2) quantum numbers can
be easily read in the Weyl basis. We have indicated
with 1 the singlet and with 3 the triplet of the SU(2)
flavour group. If chiral symmetry is broken, the Gold-
stone bosons are the charged baryons that belong to
the positive-parity triplet of the original flavour group
(quantum numbers 3+). Their U(1)P quantum num-
bers are ±2+. In the Dirac notation, operators carry-
ing the wanted quantum numbers are ψTCγ5γ0ψ and
ψ†Cγ5γ0ψ

∗. Hence, correlators of those operators are
going to play a central role: if they identify parametri-
cally light particles as the Lagrangian fermion mass is
sent to zero, there will be a clear support for QCD-like
chiral symmetry breaking, otherwise we will get an indi-
cation that the theory may be in a less familiar phase or
regime.

It is worth remarking that when it comes to the defi-
nition of physical states, each choice of the fermion nota-
tion has advantages and disadvantages. In particular, in
the Majorana notation, states with a well-defined baryon
charge can be obtained only by combining correlators of
different bilinears. Calculations of correlators can be car-
ried out using elementary properties of the Dirac algebra
and will not be discussed any further. For some explicit
examples, we refer to [34].

In addition to purely fermionic operators, one can con-
sider gluonic operators and mixed gluonic-fermionic op-
erators. Calculations involving those operators do not
present any relevant difference with respect to similar
calculations performed earlier and reported in the liter-
ature, to which we refer for further technical details (see
e.g. [11, 16, 36]). Since the physical states contributing

3 The states that are called baryons in this work are more often re-
ferred to as diquarks in the literature of studies of gauge theories
based on a (pseudo-)real gauge group (e.g. SU(2), G(2)). The
same nomenclature is sometimes used for a real representation
of a gauge group (e.g. the adjoint representation). This nam-
ing convention is discussed also in Appendix B. We note that
also the spin 1/2 state introduced below has a non-trivial baryon
charge, and hence is classified as a baryon. However, with the
term (anti-)baryon we indicate in this work only the states with
q = 2 (q = −2).

to a correlator in a particular channel are selected solely
by their quantum numbers, in general the large distance
exponential decay of correlators with the same quantum
numbers is dominated by the same mass, which is the
mass corresponding to the ground state in that channel4.
This is particularly relevant for the scalar, which should
emerge both in a calculation involving purely fermionic
operators and in a calculation involving purely gluonic
operators with quantum numbers5 JP = 0+. This chan-
nel is particularly important for phenomenology, as in
models of strongly interacting dynamics beyond the stan-
dard model it is identified with the Higgs boson of the
standard model itself. For a novel strongly interacting
theory to be compatible with the latest experimental
findings, the scalar must turn out to be lighter than the
other particles. One of the central results of our calcula-
tion is a sufficiently precise measurement of the notori-
ously noisy scalar channel that enables us to assess with
enough accuracy what is the mass difference between the
scalar and the nearest particle in the spectrum, as we
shall see in the following section.

III. RESULTS

The action of the discretised model used in our numer-
ical study is given by

S = SG + SF (25)

where

SG = β
∑
p

Tr [1− U(p)] (26)

and

SF =
∑
x,y

ψ(x)D(x, y)ψ(y), (27)

are respectively the pure gauge part (Wilson action) and
the fermionic contribution. Here U(p) is the lattice pla-
quette and

D(x, y) = δx,y − κ [(1− γµ)Uµ(x)δy,x+µ (28)

+ (1 + γµ)U†µ(x− µ)δy,x−µ
]

is the massive Dirac operator in the Wilson lattice dis-
cretisation of fermion fields. κ = 1/(8 + 2am) is the
hopping parameter, a the lattice spacing and m the

4 However, there are cases in which either kinematics or dynamics
prevents some states from appearing in certain correlators. A
remarkable example in this category is large-N QCD, for which,
for instance, meson correlators do not get contributions from
glueballs and viceversa.

5 We have omitted charge conjugation, which for gauge group
SU(2) is always positive.



6

bare fermion mass. For further details about the lat-
tice model, we refer to [11, 15, 16], where the Nf = 2
adjoint fermion case is studied for gauge group SU(2),
using similar notations. The algebra relating the vari-
ous fermion formalisms carries over to the lattice in a
straightforward way. The simulations were done using
the HiRep code [21]. The Monte Carlo trajectories used
for sampling observables were generated using a Ratio-
nal Hybrid Monte Carlo (RHMC) algorithm [37]. Other
details on our simulations are provided in Appendix D.

Correlators among operators can be computed on a
spacetime lattice after Euclidean rotation. In particular,
if ~x and t are respectively the spatial and temporal com-
ponents of the position vector x, for a bilinear Ψ(x) we
have

lim
t→∞

∑
~x

〈Ψ(~x0, t0)Ψ(~x, t0 + t)〉 ∝ e−mαt , (29)

where mα is the lowest mass with the quantum numbers
α carried by Ψ and the sum is over the whole spatial
volume.

In our study, we make use of Wilson fermions, for
which chiral symmetry is explicitly broken. As a con-
sequence, the fermion mass gets an additive renormali-
sation term that shifts the chiral point away from zero
bare mass. A mass that is only subject to multiplicative
renormalisation (and hence is zero at the chiral point)
can be defined through the partially conserved axial cur-
rent (PCAC). Using the Dirac notation, the PCAC mass
is defined as the large time limit of

amPCAC(t) =

∑
~x

〈
∂0A0(~x, t)P (~0, 0)

〉
2
∑
~x

〈
P (~x, t)P (~0, 0)

〉 , (30)

where

A0(~x, t) = ψ(~x, t)γ0γ5ψ(~x, t) (31)

P (~x, t) = ψ(~x, t)γ5ψ(~x, t) , (32)

and the time derivative is discretised using the backward-
forward symmetrised lattice difference operator (which is
defined as the difference between the values of a function
in two neighbour points divided by the lattice spacing).
The lattice technology used to define correlators and the
mPCAC mass and to compute them on the lattice is by
now standard (see e.g. [38] for a more extended treat-
ment).

In our investigation of fermion correlators, we used
the Nf = 1 Dirac and the Majorana formalism (see
e.g. [39, 40] for technical details on lattice computations
involving Majorana fermions), in some cases performing
the analysis in both ways to cross-validate the result.
The analysis code in the Dirac formalism, used for con-
nected contributions to correlators, is based on HiRep,
while a code developed for studies of Super Yang–Mills
theories [36] has been used for cross-validation of results
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FIG. 1: (Color online) The phase diagram of the theory, show-
ing the average plaquette on a 44 lattice at 1.4 ≤ β ≤ 2.8,
−1.7 ≤ am ≤ −0.1.

for triplet contributions, for calculations involving sin-
glets and for spin–gauge composite states. Gluonic ob-
servables (and in particular glueball states) have been
studied using the techniques exposed in [41]. Our nu-
merical results are reported below.

A. Phase diagram

The lattice action describes the physics of the contin-
uum model only in the limit β → ∞. The opposite
(strong coupling) limit is generally separated from the
continuum (below referred to as the “physical region”)
by a phase transition. The strong coupling phase, dom-
inated by lattice artefacts, is called the bulk phase. An
order parameter for the transition from the bulk phase
to the phase connected to the continuum theory is the
plaquette. Simulations aiming at studying continuum
physics need to make sure that the parameters are chosen
in such a way that the model is in the region connected
to the continuum. A simple scan on a small lattice allows
us to perform a sensible choice of the parameters.

In the absence of a prior investigation of this theory
on the lattice, a study of the lattice phase diagram was
necessary to identify the physical region. The average
plaquette was considered on a 44 lattice, in the ranges
1.4 ≤ β ≤ 2.8, −1.7 ≤ am ≤ −0.1, in steps of 0.1. Once
the region of the bulk phase transition was identified,
points were added in its neighbourhood to increase the
resolution to 0.05. The results, shown in Fig. 1, indicate
a bulk phase transition at β ≈ 1.9, am ≈ −1.65.

In order to simulate near the continuum, a large β
would be ideally needed. However, the larger the β the
smaller the lattice spacing. Hence, to obtain a lattice
of a physically meaningful size a large number of sites
in each direction is needed. In practical terms, this will
make the simulation computationally very costly, with
the cost increasing exponentially with β. Likewise, ide-
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TABLE II: The lattices considered in this study. Here Nconf

indicates the number of thermalised configurations used in the
averages, am is the bare fermion mass in units of the lattice
spacing a and the first column is a reference name for the set.
Also indicated for each set is the lattice volume. Ensembles
marked with ∗ do not meet the condition Lam2+

>∼ 9, which
was found to be a necessary prerequisite in order to have
results free from finite-volume artefacts (see Sect. III D for
details), and hence have not been used in our analysis.

Name Volume −am Nconf Excluded

A1 16× 83 1.475 1500 ∗
A2 16× 83 1.500 1500 ∗
A3 16× 83 1.510 1500 ∗
A4 16× 83 1.510 4000 ∗
B1 24× 123 1.475 1500

B2 24× 123 1.500 1500

B3 24× 123 1.510 4000

C1 32× 163 1.475 1500

C2 32× 163 1.490 1500

C3 32× 163 1.510 1500

C4 32× 163 1.510 4000

C5 32× 163 1.514 1500

C6 32× 163 1.519 1500

C7 32× 163 1.523 1500 ∗
D1 48× 243 1.510 1534

D2 48× 243 1.523 2168

ally the mass should be as small as possible. However,
at fixed β and lattice size, strong lattice artefacts and
finite size effects appear when the mass is reduced to-
wards the chiral limit. Hence, the minimum mass that
can be simulated depends on β and on the lattice volume
V . When choosing simulation parameters, a compromise
between the ideally suited situation and the emergence
of practical difficulties needs to be reached, verifying a
posteriori that the choice of parameters is meaningful for
describing the physical system. Based on the obtained
phase diagram and on the above considerations, a single
value of the lattice spacing, set by β = 2.05, was chosen,
and bare fermion masses were considered in the range
−1.523 ≤ am ≤ −1.475. For the quantitative measure-
ments that follow, lattice sizes of NT×N3 between 16×83

and 48×243 were considered. Lattice volumes and other
parameters are shown in Tab. II.

B. Centre symmetry

At zero temperature and infinite spatial volume,
SU(N) gauge theories with adjoint fermions preserve the
(Z(N))4 symmetry related to centre transformations in
the four Euclidean directions. When shrinking the vol-
ume or increasing the temperature (the two mechanisms

TABLE III: Glueball masses and string tension

Name a
√
σ am0+ am2+

A1 0.424(13) 0.8422± 0.0968 1.3148± 0.2305

A2 0.335(10) 0.7320± 0.0885 1.4678± 0.2176

A3 0.299(12) 0.5690± 0.0585 1.6921± 0.3196

A4 — 0.5873± 0.0553 —

B1 0.378(19) 0.9582± 0.1174 1.8059± 0.3643

B2 — 0.7296± 0.1092 —

B3 0.322(10) 0.5284± 0.1494 —

C1 0.436(60) 0.9654± 0.1057 1.7461± 0.3526

C2 0.379(44) 0.8265± 0.0644 1.9130± 0.5004

C3 0.318(11) 0.5985± 0.0573 1.6285± 0.3079

C4 — 0.5901± 0.0438 —

C5 0.322(13) 0.5530± 0.0415 1.5834± 0.2263

C6 0.2859(75) 0.3689± 0.0437 1.9897± 0.2589

C7 0.2368(84) 0.3146± 0.0278 1.0188± 0.0977

D1 — 0.4609± 0.0553 —

D2 0.2354(56) 0.3355± 0.0264 1.3387± 0.1104

TABLE IV: PCAC and baryon masses (triplet channels).

Name amPCAC ampseudoscalar amscalar amvector

A1 0.1486(17) — 0.9704(58) —

A2 0.1108(20) — 0.8432(81) —

A3 0.0906(27) — 0.763(12) —

A4 0.0872(22) — 0.747(10) —

B1 0.1493(29) — 0.9733(23) 2.297(59)

B2 0.1113(8) 1.969(39) 0.8449(31) 2.062(41)

B3 0.0911(7) 1.635(45) 0.7644(30) —

C1 0.1490(3) — 0.9723(12) —

C2 0.1278(3) — 0.9035(16) —

C3 0.0911(3) — 0.7646(15) —

C4 0.0905(5) 1.594(58) 0.7645(17) —

C5 0.0829(6) 1.712(31) 0.7288(29) 1.702(70)

C6 0.0659(9) 1.518(42) 0.6473(44) —

C7 0.0484(5) — 0.5480(36) —

D1 0.0913(2) — 0.7651(11) —

D2 0.0472(3) 1.282(62) 0.5412(25) —

TABLE V: Meson and spin- 1
2

state masses (singlet channels).

Name am1/2 amscalar ampseudoscalar amvector amaxial

B1 1.707(20) 0.64(20) 0.9859(91) 1.1605(12) 2.27(67)

B2 1.535(72) 0.91(33) 0.839(45) 1.0504(23) 1.91(10)

B3 1.349(51) 0.53(11) 0.819(22) 0.9792(55) —

C4 1.325(24) 0.602(85) 0.751(19) 0.9757(54) 2.260(47)

C5 1.284(22) 0.434(78) 0.750(17) 0.9433(34) —

C6 1.200(73) 0.339(86) 0.741(38) 0.8635(48) 2.190(52)

D1 — — — 0.9761(53) —

D2 0.949(34) 0.328(49) 0.598(33) 0.737(18) 1.664(76)
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FIG. 2: (Color online) The histogram of the average Polyakov
loop for all configurations belonging to the set shown in the
label of each subfigure, for all space-time directions. The
single peaks indicate an unbroken centre symmetry.

being connected in an Euclidean setup6), the system can

6 As in our simulations, we have assumed periodic boundary con-
ditions for the gauge fields in all directions, periodic boundary
conditions for fermionic fields in spatial directions and antiperi-
odic boundary conditions for fermionic fields in the temporal di-

pass through various phases (or more precisely regimes, if
the number of degrees of freedom is finite) with different
centre symmetry patterns [42].

The order parameter for the centre symmetry factor
associated to the direction µ̂ is the vacuum expectation
value 〈Lµ〉 of the traced Polyakov loop in that direction

Lµ =
∑
i⊥

Tr

Nµ∏
i=0

Uµ(x⊥, xµ)

 , (33)

where xµ is the µ-th coordinate, x⊥ the set of coordinates
in the perpendicular directions to µ̂ and Nµ the number
of lattice points in the µ̂ direction.

The Polyakov loop can be used to detect finite volume
artefacts. On a sufficiently large lattice, the distribution
of the vacuum expectation values of all four Polyakov
loops are symmetric with a peak at zero. A change of
regime will occur when, as reducing the lattice size, N
peaks will start to appear in one of the Polyakov loop
distributions. As the lattice size is further reduced, the
Polyakov loops show a more complicated pattern charac-
terised by the distribution of one or more of them having
N peaks. Finally, in the zero-volume limit, all the four
Polyakov loop distributions are again peaked at zero [42].
Following the order of the discussion above, the regime
connected with the infinite volume limit is the first of the
two regimes characterised by a maximum of the Polyakov
loop histogram at zero. In order to disentangle this from
the opposite zero-volume limit, the Polyakov loop aver-
age needs to be investigated as a function of the lattice
size.

The regime of our ensembles with respect to the
(Z(2))4 symmetry was tested by investigation of aver-
ages of Polyakov loops. When finite size effects are ab-
sent, we expect the average of traced Polyakov loops in
all directions to be consistent with zero within errors,
with the histogram of values having a single peak at zero
and being symmetric around that value. Polyakov loop
averages with a doubly-peaked distribution at two non-
zero values symmetric around the origin signal finite size
effects [16]. Representative plots of 〈Lµ〉 showing a dis-
tribution peaked in zero are given in Fig. 2. All the
results reported here have been obtained for choices of
parameters for which the system is in a regime with all
the distributions of Polyakov loops peaked at zero. In
order to check that this is the regime of the thermody-
namic limit, we have observed that reducing the lattice
size below a certain value gives rise to a two peak struc-
ture developing in the Polyakov loop distributions. This
study indicates that our simulations are free from centre-
related finite size artefacts.

rection, the latter being related to the finite temperature setup.
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FIG. 3: (Color online) The history of the topological charge
Q for the indicated ensembles; other ensembles had similar
properties.

C. Topological charge

A potential problem of lattice simulations of gauge the-
ories is the emergence of long autocorrelations among
topological sectors at couplings that are crucial for tak-
ing the continuum limit. In order to understand whether
this also happens in our case, we have monitored the
topological charge history of our runs.

The topological charge of a lattice configuration can
be defined as

Q =
1

32π2

∑
i

εµνρσTr (Uµν(i)Uρσ(i)) , (34)

where the sum extends over the whole lattice, εµνρσ is
the fully antisymmetric tensor and Uµν(i) is the plaque-
tte starting from point i ≡ (~x, t) in direction µ̂ and com-
ing back to i from i + ν̂ . In the continuum limit, Q is
an integer labelling the topological sector to which the
configuration belongs.

Monte Carlo determinations of Q are hindered by ul-
traviolet fluctuations, which hide the underlying topolog-
ical structure. These fluctuations can be removed using
smoothing techniques such as cooling [43] or the more
recently introduced Wilson flow [44], which are expected
to provide similar benefits [45].

In an ergodic simulation, the system should efficiently
explore topological sectors. However, long autocorre-
lations are shown to appear when the continuum limit
is approached. These autocorrelations determine an in-
crease of the required number of configurations that are
needed to obtain statistically significant vacuum expecta-
tion values of physical observables. A recent description
of the problem for QCD (and a proposed solution) can
be found in [46]. Similar autocorrelations have been ob-
served in investigations of novel strong dynamics beyond
the standard model (see e.g. [47]).

We have measured the value of the topological charge
for our configurations using equation (34). The ultra-
violet fluctuations were filtered out using the cooling
method described in [43, 48, 49]. Representative sam-
ple histories of Q are shown in Fig. 3. In general, the
results were found to show good tunnelling behaviour,
confirming that the Monte Carlo was not trapped in a
single topological sector and supporting the robustness
of our error estimates. A more technical discussion of
instanton-related observables in our simulations (includ-
ing the topological susceptibility and the correlation time
of the topological charge) is provided in Appendix D.

Another check of finite size artefacts is provided by
a study of the instanton size distribution [49]. For our
choice of parameters, the instanton size distributions are
those expected in the large volume limit. This investiga-
tion provides another indication that our simulations are
free from the most obvious finite size artefacts.

D. Spectral observables

For the spectroscopic study, we considered masses of
mesonic and baryonic two-fermion states, the 0+ glue-
ball (the 2+ was also considered, but found to be too
noisy to provide useful information), and a spin- 12 state,
as well as the fundamental string tension extracted us-
ing correlators of Polyakov loops (see e.g. [16]). Bary-
onic observables were calculated using two codes: one
(HiRep) working in the Dirac basis and using stochastic
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FIG. 4: (Color online) Effective masses for the given states as a function of t in lattice units on the D2 ensemble. A fit of the
plateau is also displayed, together with the fit range.

sources in color space (the Z2SEMWall method of [50]),
and one developed for lattice studies of Super Yang–Mills
theories [36]. Mesonic observables were calculated using
the latter code. For the disconnected contributions the
noisy estimator technique has been applied in combina-

tion with the truncated solver method [51]. This rather
time consuming measurement has been carried out only
on every 4th configuration. There is a significant dif-
ference in the relevance of the disconnected contribution
for the different operators: it is the dominant part of
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the scalar meson correlator, but negligible for the pseu-
doscalar meson. Gluonic observables were calculated us-
ing the methods described in [16, 41]. The spin- 12 state
is constructed in the continuum from the operator

Ospin- 12
=
∑
µ,ν

σµνtr[Fµνξ] , (35)

where σµν = 1
2 [γµ, γν ]. This state, which can be seen as a

bound state of a fermion and a gluon, has been measured
using a combination of APE and Jacobi smearing, with
the used tools described in [36].
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FIG. 5: (Color online) The connected correlator and the full
correlator (which includes both connected and disconnected
contributions) in the scalar meson channel for the ensamble
D2.

A representative set of effective mass plots are shown
in Figure 4 for the D2 ensamble. The errors on both the
effective masses and the final fit were calculated using a
blocked bootstrap method. At higher mPCAC the quality
of the the plateaux is comparable to those shown in Fig-
ure 4. In the panes of this figure, the bands show the ex-
tracted mass, and stretches across the data we have used
for the fits. As expected, the highest quality plateaux are
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masses, at am = −1.51, for the four lattice sizes considered.
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obtained for the PCAC mass and the scalar baryon. The
quality is also good for the axial vector. Mass plateaux
for the scalar meson, the scalar glueball and the spin- 12
are limited to about four points. This is usual for those
states. An analysis of the results suggests that the sys-
tematics associated with these latter plateaux should not
affect the discussion provided in this paper. The relative
contribution of the connected and the disconnected part
to the scalar meson correlator for the set D2 is displayed
in Fig. 5. The plot shows that the error is dominated
by the disconnected contribution, which is neverthless
computed with enough accuracy to provide a meaningful
determination of the mass.

To probe the extent of possible finite-size effects, stud-
ies of the pseudoscalar and of the scalar mass (extracted
in the gluonic channel) were made at am = −1.51 at each
of the four lattices considered. As is shown in Fig. 6,
the results on the three largest lattices were all found to
agree, while the results on the smallest lattice (of volume
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V = T × L3 = 16 × 83) are inconsistent with the oth-
ers. This result can be used to provide an estimate of
the minimal box size needed to be free from finite size
effects. Using the value of the string tension measured
on the set of configurations at am = −1.51, we obtain
the requirement La

√
σ ≥ 3.8, or equivalently, in terms

of the mass of the 2+ baryon, Lam2+
>∼ 9. The lattice

sizes that do not respect this bound (and have therefore
been excluded from our analysis) are marked with a ∗
in Tab. II. We also note that this bound has been ob-
tained in the parameter region in which physical states
are heavier in lattice units. Ideally, one would like to de-
termine this bound for lower masses. This investigation
is deferred to a future study.

As a cross-check of the determination obtained from
Polyakov loop correlators, the string tension has been
computed also using Wilson loops. The technicalities of
this calculation are described in [16]. Some examples
of the static inter-fermion potential from Wilson loops
are shown in Fig. 7. The string tension has been ex-
tracted using the Cornell ansatz for the potential. The
results found agree with the determination obtained us-
ing Polyakov loop correlators, but are in general less ac-
curate. For this reason, in this section we have used the
determination obtained from Polyakov loops.

The spectrum of the theory in lattice units (reported
in Tabs. III, IV and V) is shown in Fig. 8, with Fig. 9
displaying ratios of masses over the string tension vs.
mPCAC. In these plots, we show only results obtained on
the largest available lattice at any simulated bare mass.
Some states have proven to be numerically hard to mea-
sure, giving large error bars; for the sake of clarity, those
states have been omitted from the figures. The size of
the statistical error for the displayed states is affected

by the autocorrelation time of the configurations (see
appendix D), the statistics of the simulations and the
quality of the corresponding mass plateau, and as a con-
sequence presents some expected variation among states
at fixed mPCAC and for the same state across different
values of mPCAC.

In an infrared conformal theory, the behaviour of the
mass spectrum as a function of the quark mass is remark-
ably different than in a confining theory. In particular,
the spectral signature of infrared conformality has been
investigated in detail in [11, 15, 16, 52–54]. The conclu-
sion from these works is that, unlike in QCD, in infrared
conformal theories near the massless limit ratios of spec-
tral masses stay constant as a function of the fermion
mass. This implies that, as expected, there is no Gold-
stone boson associated to spontaneous breaking of chiral
symmetry. Hence, considering mass ratios involving the
would-be Goldstone boson of chiral symmetry breaking
and studying their behaviour in the massless limit is a
clear signal that distinguish spontaneous breaking of chi-
ral symmetry and infrared (near-)concormality. In our
case, from the data one can see that while all masses
decrease monotonically as mPCAC → 0, the ratio of spec-
tral quantities to the string tension remains roughly con-
stant for most quantities in the range studied7, with some

7 Although this behaviour is by itself a robust indication that the
small mass regime of a near-conformal theory has been reached
in our simulations, precision measurements of masses of bound
states at zero fermion mass still require an extrapolation over a
wide mPCAC region. We remark that after performing a simple
extrapolation to zero mPCAC of our data, most of the quantities
discussed in this section are compatible with zero in the chiral
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(particularly the scalar glueball) showing some deviation
(albeit within two standard deviations) at large fermion
mass. Similar behaviour is observed for the 0+ meson
mass, which is compatible with the mass of the scalar
glueball. A straightforward interpretation of the degen-
eracy found between the lowest-lying states in these two
channels is that the glueball set of operators and the me-
son operator with 0+ quantum numbers project onto the
same ground state. This provides support for mixing be-
tween the scalar meson and the scalar glueball.

We also note that this scalar state is the lightest state
in the spectrum. After having been observed in [11] in the
SU(2) gauge theory with two adjoint fermions, the pres-
ence of a light scalar has proved to be a feature that keeps
recurring in gauge theories near the conformal window
(see [26, 55, 56] for recent lattice investigations and [57]
for an approach based on gauge-string duality). The light
scalar, which might be a signature in this class of models,
is suggestive of a light Higgs appearing in this framework.
This result indicates that strongly interacting dynamics
beyond the standard model is not incompatible with the
experimental constraint that the Higgs must be light in
any extension of the standard model.

E. Chiral condensate anomalous dimension

The flatness of ratios of spectral quantities in this the-
ory as the fermion mass is send to zero are suggestive
of the model being in a conformal or near-conformal
phase [11, 15, 16]. This indication is reinforced by the
fact that the scalar is the lightest state in the theory. We
stress that at the current stage of our investigations nu-
merical evidence should be taken only as a hint. With
this in mind, a conventional chirally broken phase seems
to be excluded8. For this reason, for the purpose of un-
derstanding quantitatively the character of the theory,
we will use a conformal ansatz and hence disregard chi-
ral perturbation theory as a possible explanation of our
model. This choice is based on the observation that in
chiral perturbation theory the lightest degree of freedom
is to be found in the 2+ baryon channel. Hence, even if
the system exhibited chiral symmetry breaking, our data
would not be in the asymptotic regime, with the conse-
quence that chiral perturbation theory is not applicable
in this range of masses. Note that similar considerations
also hold if one would include the light scalar in the effec-

limit. Establishing if all, some, or none of these spectral quanti-
ties are zero in the zero-mass limit is of crucial importance for a
definite answer to the questions we are addressing. However, this
would require more extensive studies on larger lattices, which are
outside the scope of this work.

8 As we will remark in greater detail in the following section, the
data are also compatible with a walking behaviour, i.e. a phase
that at intermediate energies look infrared conformal, but at
lower energies is in fact chirally breaking.
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FIG. 10: (Color online) Plots of Lam2+ as a function of

Lam
1/(1+γ∗)
PCAC for the three lattice volumes 24× 123, 32× 163

and 48 × 243 and γ∗ = 0.9, 1.0, 1.1 (top: γ∗ = 0.9; middle:
γ∗ = 1.0; bottom: γ∗ = 1.1). The results appear to identify
a universal curve for γ∗ = 0.9− 1.0.

tive lagrangian as done in [58], the 2+ baryon still being
the only degree of freedom surving in the deep infrared.

Near-conformality can be exploited to determine the
value of the anomalous dimension of the chiral conden-
sate γ∗. We may use various techniques to extract γ∗.
We have used two methods for this work: finite-size
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FIG. 11: (Color online) The behaviour of the Dirac mode
number for a subset of the lattices considered.
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FIG. 12: (Color online) The behaviour of the Dirac mode
number on the D2 lattice, compared with the results of the
numerical fit, with γ∗ = 0.92.

scaling predictions and scaling of the spectrum of the
Wilson Dirac operator. For the first case, for a confor-
mal theory, as a function of the mPCAC mass, a spec-
tral quantity mX of the system follows the scaling rela-
tion [15, 16, 53, 54, 59–61]

LamX = f
(
L (amPCAC)

1
1+γ∗

)
, (36)

for some function f , where L → ∞ is the finite spatial

extent of the lattice, and the combination Lm
1/(1+γ∗)
PCAC is

kept constant. If the system is in the scaling region, then
this relation may be used to estimate γ∗ in the following
way.

Firstly, we plot LamX against L (amPCAC)
1/(1+γ∗) for

all available lattice volumes on one plot for each of various
values of γ∗. We then take the set of plots and find the
region of γ∗ that allows the sets from different lattices to
lie on a single universal curve. In Fig. 10 we see the 2+

scalar baryon analysed in this manner, at three values
of γ∗; we see the best fit is observed in 0.9 ≤ γ0 ≤ 1.0,
and so we expect the anomalous dimension to lie in this

region9.
A more precise method of determining γ∗ is to fit the

Dirac mode number ν(Ω) as a function of the Dirac eigen-
value Ω [62] (see also [63]). We expect the mode number
to scale as:

a−4ν(Ω) ≈ a−4ν0(M) +A[(aΩ)2 − (aM)2]
2

1+γ∗ , (37)

where M = ZAmPCAC and ZA is the renormalisation
constant of the isovector axial current (for further details,
see [62]). The raw output of a set of simulations is plotted
in Fig. 11.

In numerical studies of a mode number distribution
that follows this relation, we have four parameters to
fit for: ν0(M), A, (aM)2, and γ∗. Additionally, in the
presence of chiral symmetry, we would expect this rela-
tion to hold for Ω → 0; however, since simulations are
performed at finite fermion mass, scaling is only seen in
an intermediate range of Ω, which is not known a pri-
ori. This means that in addition to fitting for the four
variables above, we must also carefully locate the scaling
window of Ω. We choose to perform this analysis on the
D2 lattice only, since the longer extent will provide the
greatest opportunity to observe the scaling region. The
corresponding data are plotted in Fig. 12.

To do this, we consider each possible window
[ΩLE,ΩUE] in turn, and perform an initial fit using two
algorithms, Levenberg–Marquadt and simulated anneal-
ing, with M = 0 set to allow a convergent fit. To obtain
an estimate of the stability of the fit, these initial values
are then fed back into the same fitting algorithm a large
number of times, with some random “jitter” applied, and
bootstrap sampling is used to estimate the error on the
average outputs.

From this, a set of plots can be drawn for each variable
showing the value and error for all possible windows. Re-
gions of stability in each variable can be seen as plateaux,
and the scaling region is identified as the region that is
most stable on all four plots simultaneously. This anal-
ysis (limited to a subset of ΩLE, ΩUE for the sake of
readability) for the Levenberg–Marquadt results on the
D2 lattice is shown in Fig. 13, where γ∗ was consistently
found to lie in the range 0.9 <∼ γ∗ <∼ 0.95, with a best fit
of γ∗ = 0.92(1), in agreement with the analysis based on
the finite size scaling of m0− . The quality of the best fit
is shown in Fig. 12. The simulated annealing results were
found to be in good agreement with these data, and the
best fit is consistent with the range found via the spectral
scaling relations. Similar results have been obtained on
other configuration sets. Putting together the more pre-
cise Dirac operator eigenvalue and the more qualitative
spectral scaling determination, a safe estimate for γ∗ is
γ∗ = 0.925(25), with the central value that privileges the

9 While a similar analysis on other states give compatible results,
the 2+ baryon, being the most accurately determined state in
the spectrum, allows us to perform a better determination of γ∗.



15
Lower end of window:

0.180063 0.187747 0.195759 0.204113
0.212824 0.221906 0.231376 0.241250 0.251546
0.172693

 400000

 500000

 600000

 700000

 800000

 900000

 1x106

 0.2  0.25  0.3  0.35  0.4  0.45  0.5

A 

Upper end of window

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.2  0.25  0.3  0.35  0.4  0.45  0.5

a2M 2

Upper end of window

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0.2  0.25  0.3  0.35  0.4  0.45  0.5

γ∗

Upper end of window

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0.2  0.25  0.3  0.35  0.4  0.45  0.5

ν0

Upper end of window

FIG. 13: (Color online) Plateaux for the fitted observables for the D2 data at various lengths and positions of the fitting
window. The color represents the position of the lower end of the window, and the x-axis the upper end. The plateaux at the
top-right of each plot were taken as the central values of our estimates.

result obtained with the former method and the error
increased to be compatible within one standard devia-
tion with the estimate coming from the finite-size scaling
method. We note that this is the highest value found for
the anomalous dimension in any lattice study of mod-
els relevant for strongly interacting dynamics beyond the
standard model.

IV. DISCUSSION

Taken at face value, the numerical results of the pre-
vious section would imply infrared conformality of the
theory with an anomalous dimension of order one. Since
both the infrared conformality of the theory and the large
anomalous dimension are somewhat unexpected, in this
section we review arguments that seem to suggest a dif-
ferent result, discuss their extent of validity (and the ex-
tent of validity of our analysis) and outline where further
simulations will help in pinning down potential remaining
issues.

We have already stressed the large value of the anoma-
lous dimension of the condensate, which makes this the-

ory unique among those investigated on the lattice to
date. However, we remark that the anomalous dimension
has been obtained at a single lattice spacing, while the
interesting quantity is its value in the continuum limit.
In SU(3) with Nf = 12 fundamental fermion flavours, a
strong lattice spacing dependence of the anomalous di-
mension has been observed that can be successfully de-
scribed by adding subleading corrections to the dominant
scaling behaviour of observables near the infrared fixed
point [64]. Hence, in order to determine the continuum
value of the condensate anomalous dimension, a more
extended investigation involving higher β values would
be needed. Such an investigation will enable us to per-
form a robust extrapolation that includes scaling viola-
tions. In this work, we have used the standard Wilson
action for the gauge fields and the Wilson discretisation
of fermions. The expected discretisation errors can be
reduced by using improved actions. In the absence of a
more detailed study, we will make the working assump-
tion that the value of the anomalous dimension will not
change significantly when extrapolated to the continuum.

At a superficial sight, supporting cases for a non-
conformal behaviour in the theory discussed in this pa-
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per seem to come from arguments based on the two-loop
β-function [65] and arguments based on the Seiberg and
Witten solution of N = 2 super Yang–Mills [29], which is
related to our theory by an infinite mass deformation for
the scalar. As noted in the introduction, the behaviour
we have found does not generate any tension with the
Seiberg and Witten result for N = 2. In fact, the N = 2
theory undergoes spontaneous symmetry breaking from
gauge group SU(2) down to U(1) at any value of the
Higgs condensate. When a small mass is given to the
Higgs field, this moduli space is lifted and in the two re-
sulting vacua monopoles condense, giving rise to Abelian
confinement via the dual superconductor mechanism (al-
ready advocated before for QCD in [66]). A deformation
retaining supersymmetry allows one to construct a path
leading from N = 2 to N = 1 super Yang–Mills, with
the latter theory confining. However, the deformation
that takes N = 2 super Yang–Mills to the gauge theory
investigated in this work does not retain supersymmetry,
and as such does not allow to argue about the phase of
the theory we are interested in, starting from the original
analytic result. It should also be stressed that the origi-
nal N = 2 super Yang–Mills theory lives in the Coulomb
branch (i.e. the infrared limit is Abelian and conformal)
and when deformed with a small mass term for the Higgs
field the resulting theory has Abelian confinement of the
electric charge, which is inherently different from the con-
finement observed in non-supersymmetric non-Abelian
gauge theories [67]. In other words, this theory does not
confine in the way a consistent argument would require.
Hence, it can not be used as a starting point for arguing
about confinement in the Nf = 1 Dirac adjoint case.

Concerning the β-function argument, the underlying
result is entirely based on perturbation theory, which is
expected to break down when attempting a description
of a strongly coupled infrared fixed point. This has been
observed for SU(2) with two Dirac flavours in the ad-
joint representation, which was expected to be confining
(albeit near the onset of the conformal window) pertur-
batively, but has been shown to be infrared conformal by
lattice calculations.

Recently, it has been noticed in [68] (see also [69]) that
there is an apparent tension between large-N volume re-
duction (which is expected to hold in theories with ad-
joint fermions) and presence of a Hagedorn-type density
of states (which characterise confining theories). The au-
thors advocate a solution based on an emerging fermionic
symmetry at large N . However, on the light of our
study, another possibility is that theories with NW Weyl
flavours are not confining when NW > 1, as there are in-
dications for our case (NW = 2) and for the two adjoint
Dirac flavour theory (NW = 4).

However, even if those arguments in favour of confin-
ing behaviour have possible breaches, it is still possible
that our lattice simulations are in an intermediate mass
regime and that at lower masses the model shows con-

fining behaviour10. In order to check whether we can
see this change in behaviour, we are performing simula-
tions at larger volumes and lower masses. If the theory
turns out to be confining in the deep infrared, the impli-
cation is that SU(2) with one adjoint fermion is walking,
i.e. near-conformal in an intermediate energy range be-
fore turning confining at some low energy scale. This is
the wanted behaviour for constructing a phenomenologi-
cally viable model of strongly interacting dynamics caus-
ing electroweak symmetry breaking, with the anomalous
dimension being in the region of values compatible with
experimental constraints.

Finally, our model only contains two Goldstone bosons
associated with the chiral symmetry breaking, while
phenomenologically at least three would be required to
account for the standard model electroweak symmetry
breaking. Nevertheless, the system studied here can be
thought of as a sector of a richer theory containing also
fermions in the fundamental representation, known as ul-
traminimal technicolor, whose phenomenology has been
first explored in [70]. Our results suggest that a model
constructed along the lines of ultraminimal technicolor
could be compatible with phenomenology.

V. CONCLUSIONS

In this paper, we have performed a first numerical ex-
ploration of SU(2) gauge theory with one Dirac flavour.
After investigating the phase structure of the theory, we
have performed an extensive study at a value of the cou-
pling that we have found to be continuously connected
with the continuum limit of the theory. By studying
the scaling of the spectrum and of the eigenvalues of the
Dirac operator as the mass is reduced towards the chiral
limit and the lattice is kept large enough for finite size
artefacts to be under control, we have found indication
of a conformal infrared behaviour with an anomalous di-
mension 0.9 <∼ γ∗ <∼ 0.95. If this features are confirmed
by more extended simulations aimed at extrapolations to
the continuum limit, the model will provide the first the-
ory in the conformal window that has an anomalous di-
mension compatible with phenomenological constraints.
Another possibility is that the theory is walking, and
we are just observing its behaviour at intermediate en-
ergy scales. This case would also be interesting, as this
would result in the first observation of a near-conformal

10 We note that this is a logical possibility for any lattice simula-
tion of this type, and the ability to observe in practice the true
chiral behaviour in this case crucially depends on the separation
between the two scales at which the plateau in the spectrum is
observed. In particular, for phenomenology a large scale separa-
tion (of a few orders of magnitude) is required. Observing both
regimes in a theory with such a large scale separation is a pro-
hibitive task for lattice simulations, given the current techniques
and the current computational resources.
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theory with a large anomalous dimension. Such an ob-
servation would be again of theoretical relevance towards
the construction of a phenomenologically viable explana-
tion of electroweak symmetry breaking based on a novel
strong dynamics beyond the standard model. Although
the system studied here does not possess enough Gold-
stone bosons to provide a complete description of elec-
troweak symmetry breaking due to a novel strong in-
teraction, it might appear as a sector of a theory that
could realise such a mechanism of electroweak symmetry
breaking. Finally, we remark that the finding of a large
anomalous dimension is relevant not only for understand-
ing the viability of electroweak symmetry breaking by a
new strong force, but also for advancing our understand-
ing of the phase diagram of non-Abelian gauge theories.
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Appendix A: Notations and conventions

In this Appendix, we describe for convenience the no-
tations and the conventions on the Dirac algebra we have
used for deriving the results of Sect. II.

In Minkowski space, with the metric tensor g =
diag(+1,−1,−1,−1), we choose to use a chiral represen-

tation of the Dirac algebra, with

γµ =

(
0 σµ
σµ 0

)
, (A1)

where in turn

σµ = (12, ~σ) , σµ = (12,−~σ) . (A2)

~σ = (σ1, σ2, σ3) is the 3-vector formed from the Pauli
matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

(A3)
and 12 is the 2×2 identity matrix. As usual, we define

γ5 = iγ0γ1γ2γ3 =

(
12 0

0 −12

)
. (A4)

Charge conjugation is defined as

ψC = Cψ
T

(A5)

where

C = iγ0γ2 = i

(
σ2 0

0 −σ2

)
. (A6)

The properties

C† = CT = −C , (A7)

CγµC = γTµ , (A8)

Cγ5C = −γ5 . (A9)

easily follow from the definition.

Appendix B: A note on states and parity

Our naming convention for bound states and lattice op-
erators relevant for this investigation is different from the
one used in lattice simulations of QCD and supersymmet-
ric Yang–Mills theory. In order to clarify the correspon-
dence, we discuss in this Appendix the relation between
our classification of the spectrum and others found in the
literature, in particular with connection to the mesonic
and baryonic operators we are using. If one compares the
states studied here to their QCD equivalents, or to other
theories beyond the standard model, it is important to
keep in mind the differences in the conventions we are
going to expose.

In this work, fermion bilinears are meson and baryon
operators. This is due to the fact that the gauge group
(in our case, SU(2)) is (pseudo-)real. This is similar to
the notion of baryons or diquarks in other investigations
of SU(2) gauge theories with fermions in the fundamen-
tal representation (see e.g. [71] and references therein).
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In the notation in terms of two Majorana fermions, all
these states are referred to as mesons. In supersymmet-
ric Yang–Mills theory a meson is named after its QCD
equivalent, which is a flavour singlet meson. For instance,
the scalar meson is called adjoint f0 and the pseudoscalar
meson adjoint η′.

In QCD the triplet γ5 meson operator is related to
the pion, the Goldstone boson of chiral symmetry break-
ing. This state becomes massless for vanishing mPCAC

and is the lowest state in the spectrum at small enough
fermion mass. In several works related to theories differ-
ent from QCD one adopts the convention to call pions
the Goldstone bosons related to chiral symmetry break-
ing and define parity in such a way that these states are
pseudoscalar. In investigations of supersymmetric Yang–
Mills theory, for example, the chiral symmetry breaking
pattern is defined in a partially quenched setup [35] and
the light meson is called adjoint pion. Under the Lorentz
group, the corresponding creation operator can be made
to transform as a pseudoscalar if one deviates from the
definition of the parity (13), which is the same as in
QCD. A consequence of that definition is that Majorana
flavours are mixed by a parity transformation:

ξ+(t, ~x) 7→ iγ0ξ−(t,−~x) . (B1)

If one uses instead

ψ(t, ~x) 7→ iγ0γ5ψ(t,−~x) , (B2)

ψ(t, ~x) 7→ −iψ(t,−~x)γ0γ5 , (B3)

the two Majorana flavours do not mix. With this choice,
the parity quantum numbers of what in our conventions
are the baryonic states are interchanged (pseudoscalar
becomes scalar and vice versa). Hence what is called
in other investigations a pseudoscalar meson and the
(adjoint) pion, in our study is the scalar baryon. While
the convention used elsewhere might seem more natural
from the point of view of associating states to their QCD
equivalent, ours treats on equal footing the left and right
component of the Dirac spinor, as it happens for the
standard definition of the parity in QCD. Ultimately,
were the theory studied in this work to be found in
nature, the interaction of its particles with the standard
model particles would provide a natural way of fixing
the arbitrariness in the definition of the parity.

Appendix C: Correlation functions of fermion
bilinears

Our nomenclature for the contraction of correlation
functions borrows from that of QCD for the sake of fa-
miliarity. Consider a correlation function for a theory
with Nf 6= 1,

I(x, y) =
1

Z

∫
DUDψDψψaΓψb(x)ψaΓψb(y)e−S ,

(C1)

where a, b are flavour indices, to be contracted with
Wick’s theorem, and Z is the path integral. In the
case a 6= b, then only the upper contraction gives a
non-zero contribution, which then becomes a term of
the form −trΓD−1(x; y)ΓD−1(y;x), which we refer to
as both the triplet (this name being inspired by the
isospin symmetry of QCD) and the connected contribu-
tion (where the terminology refers to the fact that in
terms of purely fermionic lines the corresponding dia-
gram is connected). If a = b, however, both contrac-
tions can give non-zero contributions, resulting in a lin-
ear combination of the previous term and one of the form
trΓD−1(x;x)trΓD−1(y; y). The latter term we refer to as
the disconnected contribution, while the linear combina-
tion we call the singlet. The reason why triplet correla-
tion functions may give physically meaningful states in
what is a 1-flavour theory (where one would näıvely as-
sume a = b, so only singlets are valid) is discussed in the
main body of the text.

Appendix D: Further technical details on lattice
simulations

TABLE VI: Further details of the RHMC parameters used
in this study. Shown are the molecular dynamics trajectory
length tlen, the length of the fermionic molecular dynamics
substeps nsteps, the number of pseudofermions npf, and the
average plaquette. The number of gauge substeps was fixed
at 2nsteps.

Name tlen nsteps npf Plaquette

A1 1.0 10 1 0.57848(27)

A2 1.0 10 1 0.58833(36)

A3 1.0 10 1 0.59263(30)

A4 1.0 10 2 0.59428(14)

B1 1.0 10 1 0.57819(25)

B2 1.0 10 1 0.58787(27)

B3 1.0 10 2 0.59291(11)

C1 1.0 20 1 0.57841(26)

C2 1.0 20 1 0.58336(27)

C3 1.0 20 1 0.59316(28)

C4 4.0 45 2 0.59388(3)

C5 1.0 20 1 0.59554(28)

C6 1.0 20 1 0.60020(3)

C7 1.0 20 1 0.60445(31)

D1 4.0 65 2 0.59358(2)

D2 1.0 40 1 0.60613(2)

In this appendix we give some “under-the-hood” de-
tails of the lattice simulations performed, for complete-
ness. Table VI presents some variables from the RHMC.
tlen is the length of the molecular dynamics trajec-
tory. Different time substeps are used for the gauge and
fermionic actions: for each (relatively expensive) fermion
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TABLE VII: The average topological charge, topological sus-
ceptibility, and integrated autocorrelation time of the topo-
logical charge.

Name 〈Q〉 χtop τQ

A1 −0.02(9) 2.32(8)× 10−4 4.6

A2 0.04(8) 1.94(7)× 10−4 3.7

A3 0.13(5) 1.68(7)× 10−4 2.3

A4 0.07(6) 1.65(4)× 10−4 6.2

B1 0.11(19) 1.94(7)× 10−4 4.2

B2 −0.01(16) 1.87(7)× 10−4 3.1

B3 0.12(15) 1.58(3)× 10−4 9.1

C1 −0.46(31) 2.65(9)× 10−4 3.3

C2 0.09(36) 2.15(8)× 10−4 5.0

C3 −0.54(26) 1.64(7)× 10−4 3.1

C4 −0.20(14) 1.60(5)× 10−4 1.3

C5 −0.42(24) 1.51(6)× 10−4 3.0

C6 −0.21(30) 1.27(5)× 10−4 5.9

C7 −0.01(35) 1.05(4)× 10−4 9.1

D1 −0.29(36) 1.98(7)× 10−4 1.3

D2 −1.39(49) 1.20(4)× 10−4 6.2

substep, two (cheaper) gauge substeps are used. This
allows an increase in precision without significantly in-
creasing the cost of computation. We show the substep
length for the fermionic part; the gauge counterpart is a

factor of two smaller. The RHMC algorithm makes use
of an arbitrary number of pseudofermions Npf in order to
compute the fractional powers of the fermion matrix nec-
essary to probe non-even Nf. As a minimum, Npf = Nf;
higher numbers of pseudofermions require more compu-
tational effort but increase the precision of the rational
approximations performed by the algorithm. We made
use of a higher number of pseudofermions in the finite-
volume study to cross-check that using a single pseud-
ofermion did not give inaccurate results. Finally, the
average plaquette (normalized to unity) is quoted. For
fuller details of the algorithm and definitions of all of
these quantities, the interested reader is referred to [21].
The acceptance rate was held between 75% and 93%,
while dt = tlen/nsteps ranges from 0.025 to 0.1.

Table VII shows some topological observables. The
average topological charge 〈Q〉 is consistent with zero
within 2σ for all but two parameter sets (namely A3 and
D2), indicating good ergodicity. A3 is ruled out from
consideration anyway due to finite-volume effects, while
looking at the time history of Q for D2 shows that ad-
equate tunnelling is taking place for the ensemble to be
considered ergodic. The topological susceptibility (cal-
culated as (〈Q2〉−〈Q〉2)/V ), and the integrated autocor-
relation time of Q, are also shown. When measured in
terms of the autocorrelation time of Q, in the worse case
we have around 165 independent blocks of configurations.
This should provide enough statistics for an unbiased es-
timate of the observables discussed in this work.
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[35] G. Münster and H. Stüwe, JHEP 1405, 034 (2014),

1402.6616.
[36] G. Bergner, I. Montvay, G. Münster, U. D. Ozugurel, and

D. Sandbrink, JHEP 1311, 061 (2013), 1304.2168.
[37] M. Clark and A. Kennedy, Phys.Rev.Lett. 98, 051601

(2007), hep-lat/0608015.
[38] L. Del Debbio, B. Lucini, A. Patella, and C. Pica, JHEP

0803, 062 (2008), 0712.3036.
[39] I. Montvay, Nucl.Phys. B466, 259 (1996), hep-

lat/9510042.
[40] A. Donini, M. Guagnelli, P. Hernandez, and A. Vladikas,

Nucl.Phys. B523, 529 (1998), hep-lat/9710065.
[41] B. Lucini, A. Rago, and E. Rinaldi, JHEP 1008, 119

(2010), 1007.3879.
[42] G. Cossu and M. D’Elia, JHEP 0907, 048 (2009),

0904.1353.
[43] M. Teper, Phys.Lett. B162, 357 (1985).
[44] M. Luscher, JHEP 1008, 071 (2010), 1006.4518.
[45] C. Bonati and M. D’Elia, Phys.Rev. D89, 105005 (2014),

1401.2441.
[46] M. Luscher and S. Schaefer, JHEP 1107, 036 (2011),

1105.4749.
[47] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi,

et al., JHEP 1409, 018 (2014), 1406.0827.
[48] D. A. Smith and M. J. Teper (UKQCD collaboration),

Phys.Rev. D58, 014505 (1998), hep-lat/9801008.
[49] E. Bennett and B. Lucini, Eur.Phys.J. C73, 2426 (2013),

1209.5579.
[50] P. Boyle, A. Juttner, C. Kelly, and R. Kenway, JHEP

0808, 086 (2008), 0804.1501.
[51] G. S. Bali, S. Collins, and A. Schafer, Comput. Phys.

Commun. 181, 1570 (2010), 0910.3970.

[52] V. Miransky, Phys.Rev. D59, 105003 (1999), hep-
ph/9812350.

[53] B. Lucini, Phil.Trans.Roy.Soc.Lond. A368, 3657 (2010),
0911.0020.

[54] L. Del Debbio and R. Zwicky, Phys.Rev. D82, 014502
(2010), 1005.2371.

[55] Y. Aoki et al. (LatKMI Collaboration), Phys.Rev.Lett.
111, 162001 (2013), 1305.6006.

[56] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H.
Wong, PoS LATTICE2013, 062 (2014), 1401.2176.

[57] J. Erdmenger, N. Evans, and M. Scott (2014), 1412.3165.
[58] S. Matsuzaki and K. Yamawaki, Phys.Rev.Lett. 113,

082002 (2014), 1311.3784.
[59] T. DeGrand and A. Hasenfratz, Phys.Rev. D80, 034506

(2009), 0906.1976.
[60] T. DeGrand, Phys.Rev. D80, 114507 (2009), 0910.3072.
[61] L. Del Debbio and R. Zwicky, Phys.Lett. B700, 217

(2011), 1009.2894.
[62] A. Patella, Phys.Rev. D86, 025006 (2012), 1204.4432.
[63] A. Cheng, A. Hasenfratz, G. Petropoulos, and

D. Schaich, JHEP 1307, 061 (2013), 1301.1355.
[64] A. Cheng, A. Hasenfratz, Y. Liu, G. Petropoulos, and

D. Schaich, Phys.Rev. D90, 014509 (2014), 1401.0195.
[65] D. D. Dietrich, F. Sannino, and K. Tuominen, Phys.Rev.

D72, 055001 (2005), hep-ph/0505059.
[66] G. ’t Hooft, Nucl.Phys. B138, 1 (1978).
[67] J. Ambjorn, J. Giedt, and J. Greensite, JHEP 0002, 033

(2000), hep-lat/9907021.
[68] G. Basar, A. Cherman, D. Dorigoni, and M. Unsal,

Phys.Rev.Lett. 111, 121601 (2013), 1306.2960.
[69] G. Basar, A. Cherman, and D. A. McGady (2014),

1409.1617.
[70] T. A. Ryttov and F. Sannino, Phys.Rev. D78, 115010

(2008), 0809.0713.
[71] S. Hands and S. E. Morrison (UKQCD Collaboration),

Phys.Rev. D59, 116002 (1999), hep-lat/9807033.


