730 research outputs found
Torsion functors with monomial support
The dependence of torsion functors on their supporting ideals is
investigated, especially in the case of monomial ideals of certain subrings of
polynomial algebras over not necessarily Noetherian rings. As an application it
is shown how flatness of quasicoherent sheaves on toric schemes is related to
graded local cohomology.Comment: updated reference
Perverse coherent t-structures through torsion theories
Bezrukavnikov (later together with Arinkin) recovered the work of Deligne
defining perverse -structures for the derived category of coherent sheaves
on a projective variety. In this text we prove that these -structures can be
obtained through tilting torsion theories as in the work of Happel, Reiten and
Smal\o. This approach proves to be slightly more general as it allows us to
define, in the quasi-coherent setting, similar perverse -structures for
certain noncommutative projective planes.Comment: New revised version with important correction
Minimal Universal Two-qubit Quantum Circuits
We give quantum circuits that simulate an arbitrary two-qubit unitary
operator up to global phase. For several quantum gate libraries we prove that
gate counts are optimal in worst and average cases. Our lower and upper bounds
compare favorably to previously published results. Temporary storage is not
used because it tends to be expensive in physical implementations.
For each gate library, best gate counts can be achieved by a single universal
circuit. To compute gate parameters in universal circuits, we only use
closed-form algebraic expressions, and in particular do not rely on matrix
exponentials. Our algorithm has been coded in C++.Comment: 8 pages, 2 tables and 4 figures. v3 adds a discussion of asymetry
between Rx, Ry and Rz gates and describes a subtle circuit design problem
arising when Ry gates are not available. v2 sharpens one of the loose bounds
in v1. Proof techniques in v2 are noticeably revamped: they now rely less on
circuit identities and more on directly-computed invariants of two-qubit
operators. This makes proofs more constructive and easier to interpret as
algorithm
Seni Pertunjukan Wayang Orang sebagai Daya Tarik Wisata Perkotaan - Tinjauan Konsep Experience Economy
Transformasi perkembangan ekonomi telah beralih menuju experience economy. Tahap transformasi diawali dari tahap ekonomi agraria menjadi ekonomi industry, menuju ekonomi jasa, dan saat ini berada pada tahap ekonomi pengalaman. Tahap experience economy, ditunjukan melalui interaksi aktif antara konsumen dengan produsen sehingga membentuk pengalaman yang berkesan dalam mengkonsumsi/mengkonsumir suatu produk/jasa. Makalah ini berisi tinjauan konseptual pengelolaan seni pertunjukan tradisional wayang orang sebagai wujud dari ”experience economy” yang dapat dikembangkan untuk menjadi daya tarik wisata perkotaan. Pembahasan didasari oleh konsep dimensi ”experience” yang dirintis oleh Pine & Gilmore (1999) dalam Ho & Tsai (2010) yang terdiri dari 1) entertainment, 2) education, 3) escapist, dan 4) aestheticism. Hal ini juga dikembangkan oleh beberapa ahli lainnya. Hasil pembahasan diharapkan bermanfaat untuk mengembangkan seni pertunjukan sebagai daya tarik wisata yang dapat meningkatan kesehajteraan masyarakat secara ekonomi, dan juga mendukung pelestarian budaya dan pembangunan pariwisata yang berkelanjutan.
Kata Kunci: experience economy, seni pertunjukan, daya tarik wisata perkotaa
Rational matrix pseudodifferential operators
The skewfield K(d) of rational pseudodifferential operators over a
differential field K is the skewfield of fractions of the algebra of
differential operators K[d]. In our previous paper we showed that any H from
K(d) has a minimal fractional decomposition H=AB^(-1), where A,B are elements
of K[d], B is non-zero, and any common right divisor of A and B is a non-zero
element of K. Moreover, any right fractional decomposition of H is obtained by
multiplying A and B on the right by the same non-zero element of K[d]. In the
present paper we study the ring M_n(K(d)) of nxn matrices over the skewfield
K(d). We show that similarly, any H from M_n(K(d)) has a minimal fractional
decomposition H=AB^(-1), where A,B are elements of M_n(K[d]), B is
non-degenerate, and any common right divisor of A and B is an invertible
element of the ring M_n(K[d]). Moreover, any right fractional decomposition of
H is obtained by multiplying A and B on the right by the same non-degenerate
element of M_n(K [d]). We give several equivalent definitions of the minimal
fractional decomposition. These results are applied to the study of maximal
isotropicity property, used in the theory of Dirac structures.Comment: 20 page
Non-liftable Calabi-Yau spaces
We construct many new non-liftable three-dimensional Calabi-Yau spaces in
positive characteristic. The technique relies on lifting a nodal model to a
smooth rigid Calabi-Yau space over some number field as introduced by the first
author and D. van Straten.Comment: 16 pages, 5 tables; v2: minor corrections and addition
Symmetry analysis of crystalline spin textures in dipolar spinor condensates
We study periodic crystalline spin textures in spinor condensates with
dipolar interactions via a systematic symmetry analysis of the low-energy
effective theory. By considering symmetry operations which combine real and
spin space operations, we classify symmetry groups consistent with non-trivial
experimental and theoretical constraints. Minimizing the energy within each
symmetry class allows us to explore possible ground states.Comment: 19 pages, 4 figure
Affine configurations and pure braids
We show that the fundamental group of the space of ordered affine-equivalent
configurations of at least five points in the real plane is isomorphic to the
pure braid group modulo its centre. In the case of four points this fundamental
group is free with eleven generators.Comment: 5 pages, 1 figure, final version; to appear in Discrete &
Computational Geometry, available from the publishers at
http://www.springerlink.com/content/384516n7q24811ph
- …