3 research outputs found

    Gauge Invariance and Anomalous Dimensions of a Light-Cone Wilson Loop in Light-Like Axial Gauge

    Full text link
    Complete two-loop calculation of a dimensionally regularized Wilson loop with light-like segments is performed in the light-like axial gauge with the Mandelstam-Leibbrandt prescription for the gluon propagator. We find an expression which {\it exactly} coincides with the one previously obtained for the same Wilson loop in covariant Feynman gauge. The renormalization of Wilson loop is performed in the \MS-scheme using a general procedure tailored to the light-like axial gauge. We find that the renormalized Wilson loop obeys a renormalization group equation with the same anomalous dimensions as in covariant gauges. Physical implications of our result for investigation of infrared asymptotics of perturbative QCD are pointed out.Comment: 24 pages and 4 figures (included), LaTeX style, UFPD-93/TH/23, UPRF-93-366, UTF-93-29

    Asymptotic properties of Born-improved amplitudes with gauge bosons in the final state

    Get PDF
    For processes with gauge bosons in the final state we show how to continuously connect with a single Born-improved amplitude the resonant region, where resummation effects are important, with the asymptotic region far away from the resonance, where the amplitude must reduce to its tree-level form. While doing so all known field-theoretical constraints are respected, most notably gauge-invariance, unitarity and the equivalence theorem. The calculations presented are based on the process ffˉ→ZZf\bar{f}\to ZZ, mediated by a possibly resonant Higgs boson; this process captures all the essential features, and can serve as a prototype for a variety of similar calculations. By virtue of massive cancellations the resulting closed expressions for the differential and total cross-sections are particularly compact.Comment: 23 pages, Latex, 4 Figures, uses axodra

    Three-gluon vertex in arbitrary gauge and dimension

    Get PDF
    One-loop off-shell contributions to the three-gluon vertex are calculated, in arbitrary covariant gauge and in arbitrary space-time dimension, including quark-loop contributions (with massless quarks). It is shown how one can get the results for all on-shell limits of interest directly from the general off-shell expression. The corresponding general expressions for the one-loop ghost-gluon vertex are also obtained. They allow for a check of consistency with the Ward--Slavnov--Taylor identity.Comment: 41 pages, LaTex, plus 3 figures in separate file. Misprints (signs) in eqs.(4.26), (C.2), (C.4), (C.5) are corrected. To appear in Phys. Rev.
    corecore