14 research outputs found

    Design of a Novel Electric Diagnostic Technique for Fault Analysis of Centrifugal Pumps

    No full text
    Centrifugal pumps are the fundamental components of most industries. They are used in almost every industry to transfer liquid through pipes. The breakdown of a pump causes heavy production losses, and hence, the development of an economical and user-friendly condition monitoring system is vital in order to estimate the health of a pump in a timely manner, and to avoid an unscheduled breakdown. The intrusive condition monitoring techniques (such as vibration analysis and acoustic emission) developed for the fault diagnosis of pumps utilize expensive vibration sensors, and these sensors need to be installed on the pump body for data collection. Non-intrusive techniques (such as motor current analysis) have been proven to be economical, but have limited capabilities for diagnosing the incipient faults in pumps operating in a noisy industrial environment. The electric diagnostic technique (EDT) proposed in this paper does not require the purchase of extra sensors, and instead utilizes the existing sensors, which are usually installed on the machines, to measure and display the motor line current and voltage. The EDT has been developed in the Laboratory Virtual Instrument Engineering Workbench (LabVIEW) so as to measure the three-phase line current, and then transform it into two-phase d–q currents. These d–q currents are plotted as patterns, and the statistical features of these patterns are used to segregate the centrifugal pump fault types. Detailed experiments and evaluations have been performed in order to check the viability of the developed EDT technique

    On the Stark broadening of some Cr II spectral lines in plasma

    No full text
    International audienc

    Atomic structure of the carbon like ion Ca XV

    No full text
    International audienc

    Moving towards IoT Based Digital Communication:An Efficient Utilization of Power Spectrum Density for Smart Cities

    No full text
    The future of the Internet of Things (IoT) is interlinked with digital communication in smart cities. The digital signal power spectrum of smart IoT devices is greatly needed to provide communication support. The line codes play a significant role in data bit transmission in digital communication. The existing line-coding techniques are designed for traditional computing network technology and power spectrum density to translate data bits into a signal using various line code waveforms. The existing line-code techniques have multiple kinds of issues, such as the utilization of bandwidth, connection synchronization (CS), the direct current (DC) component, and power spectrum density (PSD). These highlighted issues are not adequate in IoT devices in smart cities due to their small size. However, there is a need to design an effective line-code method to deal with these issues in digital IoT-based communication for smart technologies, which enables smart services for smart cities. In this paper, the Shadow Encoding Scheme (SES) is proposed to transmit data bits efficiently by using a physical waveform in the smart cities' ecosystem. SES provides a reliable transmission over the physical medium without using extra bandwidth and with ideal PSD. In it, the shadow copy of the repeating bitstream is forwarded, rather than repeating the actual stream again and again. The PSD is calculated with the help of mathematical equations to validate SES. MATLAB simulator is used to simulate SES and compared with other well-known digital line-code techniques. The bit error rate is also compared between SES and the chirp spread spectrum (CSS) for the specific data frames. The coordinates of the PSD graph are also shown in tabular form, which shows a vivid picture of the working conditions of various line codes

    A Secure Communication in IoT Enabled Underwater and Wireless Sensor Network for Smart Cities

    No full text
    Nowadays, there is a growing trend in smart cities. Therefore, the Internet of Things (IoT) enabled Underwater and Wireless Sensor Networks (I-UWSN) are mostly used for monitoring and exploring the environment with the help of smart technology, such as smart cities. The acoustic medium is used in underwater communication and radio frequency is mostly used for wireless sensor networks to make communication more reliable. Therefore, some challenging tasks still exist in I-UWSN, i.e., selection of multiple nodes' reliable paths towards the sink nodes; and efficient topology of the network. In this research, the novel routing protocol, namely Time Based Reliable Link (TBRL), for dynamic topology is proposed to support smart city. TBRL works in three phases. In the first phase, it discovers the topology of each node in network area using a topology discovery algorithm. In the second phase, the reliability of each established link has been determined while using two nodes reliable model for a smart environment. This reliability model reduces the chances of horizontal and higher depth level communication between nodes and selects next reliable forwarders. In the third phase, all paths are examined and the most reliable path is selected to send data packets. TBRL is simulated with the help of a network simulator tool (NS-2 AquaSim). The TBRL is compared with other well known routing protocols, i.e., Depth Based Routing (DBR) and Reliable Energy-efficient Routing Protocol (R-ERP2R), to check the performance in terms of end to end delay, packet delivery ratio, and energy consumption of a network. Furthermore, the reliability of TBRL is compared with 2H-ACK and 3H-RM. The simulation results proved that TBRL performs approximately 15% better as compared to DBR and 10% better as compared to R-ERP2R in terms of aforementioned performance metrics

    An Automated Feature Extraction Algorithm for Diagnosis of Gear Faults

    No full text
    Gears are used for the transfer of mechanical power and are an important part of the electromechanical transmission system. Unexpected failure of gear could cause shutdown of the machines and proves to be expensive in terms of production loss and maintenance. Therefore, reliable condition monitoring is required to protect unexpected gear failures. It has been highlighted in the recently published literature that the gear faults appear at the specific gear frequencies in the instantaneous power spectrum of the motor. However, the amplitudes of these gear frequencies are very small and are shadowed by the environment noise. Thus, reliable diagnosis of gear faults is a challenge in real-time fault diagnosis systems. This issue has been addressed in this paper through the development of the automated spectral extraction algorithm. The theoretical investigation has been verified through the custom-designed experimental test rig

    Motor Bearings Fault Classification using CatBoost Classifier

    No full text
    corecore