13 research outputs found
Exploring Patient-Centred Care in Saudi Arabia: A Mixed-Methods Investigation from the Perspectives of Diabetic Patients and Healthcare Providers
Patient-centred care (PCC) is a fundamental principle in healthcare systems worldwide, with demonstrated positive effects on health outcomes, such as increased patient awareness and reduced unnecessary referrals. Although the government of Saudi Arabia is taking steps to embrace a PCC approach in healthcare, a comprehensive investigation into the implementation of PCC in Saudi Arabia is necessary. This study aims to offer valuable insights to help shape the development of policies governing the implementation of PCC in Saudi Arabia using a mixed-method approach. First, a published systematic review of PCC delivery in the Middle East and North African region is reported in Chapter 4. This is followed by qualitative and quantitative research (Chapters 5 and 6), respectively, which focus on diabetic patients’ experiences and preferences regarding their involvement in care. Chapter 7 explores the perspectives of healthcare providers in Saudi Arabia and evaluates their comprehension and implementation of PCC through quantitative research. This thesis provides an understanding of the current practice of PCC in Saudi Arabia by highlighting the key factors that influence it. It also proposes a PCC definition and framework that are more aligned with the cultural context of the Middle East and North Africa
The impact of e-banking service quality on the sustainable customer satisfaction: Evidence from the Saudi Arabia commercial banking sector
The banking sector around the globe has witnessed a huge development in its services and products. The electronic banking services are considered as a competitive advantage for the banking sector. The purpose of this paper is to evaluate the effectiveness of e-banking service quality on customer satisfaction in the context of Saudi Arabian commercial banks. Both quantitative and qualitative research methods were used in the study. A sample of 308 customers from the banking sector participated in this study. The researchers have developed a self-structured questionnaire to collect the relevant data. In addition, secondary data was gathered from published sources, including websites, journal papers, and publications of the chosen commercial banks. The findings of this study show that the eight service quality dimensions; reliability, transactional efficiency, customer support, service security, ease of use, performance, satisfaction with service quality and service content have a significant impact on the level of user's satisfaction with e-banking in the Saudi Arabian commercial banks
BoLA‑DRB3 gene haplotypes show divergence in native Sudanese cattle from taurine and indicine breeds
Autochthonous Sudanese cattle breeds, namely Baggara for beef and Butana and Kenana for dairy, are characterized by their adaptive characteristics and high performance in hot and dry agroecosystems.
They are thus used largely by nomadic and semi-nomadic pastoralists. We analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus linked to the immune response, for the indigenous cattle of Sudan and in the context of the global cattle repository. Blood samples (n = 225) were taken from three indigenous breeds (Baggara; n = 113, Butana; n = 60 and Kenana; n = 52) distributed across six regions of Sudan. Nucleotide sequences were genotyped using the sequence-based typing method. We describe 53 alleles, including seven novel alleles. Principal component analysis (PCA) of the protein pockets implicated in the antigen-binding function of the MHC complex revealed that pockets 4 and 9 (respectively) differentiate Kenana-Baggara and Kenana-Butana breeds from other breeds. Venn analysis of Sudanese, Southeast Asian, European and American cattle breeds with 115 alleles showed 14 were unique to Sudanese breeds. Gene frequency distributions of Baggara cattle showed an even distribution suggesting balancing selection, while the selection index (ω) revealed the presence of diversifying selection in several amino acid sites along the BoLA-DRB3 exon 2 of these native breeds. The results of several PCA were in agreement with clustering patterns observed on the neighbor joining (NJ) trees. These results provide insight into their high survival rate for different tropical diseases and their reproductive capacity in Sudan’s harsh environment.Instituto de Genética Veterinari
Assessment and Validation of Globodera pallida as a Novel In Vivo Model for Studying Alzheimer’s Disease
Publication history: Accepted - 11 September 2021; Published online - 19 September 2021.Background: Whole transgenic or non-transgenic organism model systems allow the screening of pharmacological compounds for protective actions in Alzheimer’s disease (AD). Aim: In this study, a plant parasitic nematode, Globodera pallida, which assimilates intact peptides from the external environment, was investigated as a new potential non-transgenic model system of AD. Methods: Fresh second-stage juveniles of G. pallida were used to measure their chemosensory, perform immunocytochemistry on their neurological structures, evaluate their survival rate, measure reactive oxygen species, and determine total oxidized glutathione to reduced glutathione ratio (GSSG/GSH) levels, before and after treatment with 100 µM of various amyloid beta (Aβ) peptides (1–40, 1–42, 17–42, 17–40, 1–28, or 1–16). Wild-type N2 C. elegans (strain N2) was cultured on Nematode Growth Medium and directly used, as control, for chemosensory assays. Results: We demonstrated that: (i) G. pallida (unlike Caenorhabditis elegans) assimilates amyloid-β (Aβ) peptides which co-localise with its neurological structures; (ii) pre-treatment with various Aβ isoforms (1–40, 1–42, 17–42, 17–40, 1–28, or 1–16) impairs G. pallida’s chemotaxis to differing extents; (iii) Aβ peptides reduced survival, increased the production of ROS, and increased GSSG/GSH levels in this model; (iv) this unique model can distinguish differences between different treatment concentrations, durations, and modalities, displaying good sensitivity; (v) clinically approved neuroprotective agents were effective in protecting G. pallida from Aβ (1–42) exposure. Taken together, the data indicate that G. pallida is an interesting in vivo model with strong potential for discovery of novel bioactive compounds with anti-AD activity.N.A.A. received a PhD studentship from Shaqra University, KSA and the Saudi Cultural Bureau in London (UKSACB). B.D.G.’s laboratory has received support for AD research from
Alzheimer’s Research UK (ARUK-NC2019-NI), the Medical Research Council (MRC) (CIC-CD1718-
CIC25), US-Ireland Health and Social Care NI (HSC R&DST/5460/2018) and InvestNI (RD101427
11-01-17-008). This work was also supported by Shaqra University, Saudi Arabi
Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality
Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae in a relatively short time (12-24hrs), significantly quicker than when larvae were exposed to conidia. This study shows that selecting the appropriate form of inoculum is important for efficacious control of disease vectors such as Ae. aegypti
Synthesis of 3,5-Bis(trifluoromethyl)phenyl-Substituted Pyrazole Derivatives as Potent Growth Inhibitors of Drug-Resistant Bacteria
Enterococci and methicillin-resistant S. aureus (MRSA) are among the menacing bacterial pathogens. Novel antibiotics are urgently needed to tackle these antibiotic-resistant bacterial infections. This article reports the design, synthesis, and antimicrobial studies of 30 novel pyrazole derivatives. Most of the synthesized compounds are potent growth inhibitors of planktonic Gram-positive bacteria with minimum inhibitory concertation (MIC) values as low as 0.25 µg/mL. Further studies led to the discovery of several lead compounds, which are bactericidal and potent against MRSA persisters. Compounds 11, 28, and 29 are potent against S. aureus biofilms with minimum biofilm eradication concentration (MBEC) values as low as 1 µg/mL
BoLA-DRB3 gene haplotypes show divergence in native Sudanese cattle from taurine and indicine breeds
Autochthonous Sudanese cattle breeds, namely Baggara for beef and Butana and Kenana for dairy, are characterized by their adaptive characteristics and high performance in hot and dry agro-ecosystems. They are thus used largely by nomadic and semi-nomadic pastoralists. We analyzed the diversity and genetic structure of the BoLA-DRB3 gene, a genetic locus linked to the immune response, for the indigenous cattle of Sudan and in the context of the global cattle repository. Blood samples (n=225) were taken from three indigenous breeds (Baggara; n=113, Butana; n= 60 and Kenana; n=52) distributed across six regions of Sudan. Nucleotide sequences were genotyped using the sequence-based typing method. We describe 53 alleles, including seven novel alleles. Principal component analysis (PCA) of the protein pockets implicated in the antigen-binding function of the MHC complex revealed that pockets 4 and 9 (respectively) differentiate Kenana-Baggara and Kenana-Butana breeds from other breeds. Venn analysis of Sudanese, Southeast Asian, European and American cattle breeds with 115 alleles showed 14 were unique to Sudanese breeds. Gene frequency distributions of Baggara cattle showed an even distribution suggesting balancing selection, while the selection index (ω) revealed the presence of diversifying selection in several amino acid sites along the BoLA-DRB3 exon 2 of these native breeds. The results of several PCA were in agreement with clustering patterns observed on the neighbor joining (NJ) trees. These results provide insight into their high survival rate for different tropical diseases and their reproductive capacity in Sudan´s harsh environment.Fil: Salim, Bashir. University of Khartoum; SudánFil: Takeshima, Shin nosuke. Jumonji University; JapĂłnFil: Nakao, Ryo. Hokkaido University; JapĂłnFil: Moustafa, Mohamed A. M.. Hokkaido University; JapĂłnFil: Ahmed, Mohamed Khair A.. University of Khartoum; SudánFil: Kambal, Sumaya. National University Biomedical Research Institute; SudánFil: Mwacharo, Joram M.. International Centre for Agricultural Research in the Dry Areas; LĂbanoFil: Alkhaibari, Abeer M.. University of Tabuk; Arabia SauditaFil: Giovambattista, Guillermo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico CONICET- La Plata. Instituto de GenĂ©tica Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de GenĂ©tica Veterinaria; Argentin
Tuning excited state character in iridium(III) photosensitizers and its influence on TTA-UC
A series of mixed ligand, photoluminescent organometallic Ir(III) complexes have been synthesized to incorporate substituted 2-phenyl-1H-naphtho[2,3-d]imidazole cyclometalating ligands. The structures of three example complexes were categorically confirmed using X-ray crystallography each sharing very similar structural traits including evidence of interligand hydrogen bond contacts that account for the shielding effects observed in the 1H NMR spectra. The structural iterations of the cyclometalated ligand provide tuning of the principal electronic transitions that determine the visible absorption and emission properties of the complexes: emission can be tuned in the visible region between 550 and 610 nm and with triplet lifetimes up to 10 μs. The nature of the emitting state varies across the series of complexes, with different admixtures of ligand-centered and metal-to-ligand charge transfer triplet levels evident. Finally, the use of the complexes as photosensitizers in triplet–triplet annihilation energy upconversion (TTA-UC) was investigated in the solution state. The study showed that the complexes possessing the longest triplet lifetimes showed good viability as photosensitizers in TTA-UC. Therefore, the use of an electron-withdrawing group on the 2-phenyl-1H-naphtho[2,3-d]imidazole ligand framework can be used to rationally promote TTA-UC using this class of complex
Chemical Characterization of Clove, Basil and Peppermint Essential Oils; Evaluating Their Toxicity on the Development Stages of Two-Spotted Spider Mites Grown on Cucumber Leaves
The two spotted spider mite (TSSM), Tetranychus urticae Koch, is a cosmopolitan mite. It rapidly reproduces and can develop resistance to chemical pesticides. This study aims to evaluate the toxicity and acaricidal activity of three essential oils from basil, clove, and peppermint against T. urticae reproduction, which is grown on three cucumber cultivars, Chief (SC 4145), Raian (CB898), and Toshka (SC 349), under laboratory conditions at 27 + 3 °C and 70 + 5% RH. GC-MS characterized the volatile oils of basil, clove, and peppermint. Methyl cinnamate, eugenol, and menthol were the main essential oils in basil, clove, and peppermint, respectively. The results indicated significant differences in the duration of development between T. urticae feeding on the three cucumber cultivars (p ≤ 0.05), including eggs, protonymph, and deutonymph time. The Toshka (SC 349) cultivar recorded the lowest developmental time. The longevity period exhibited the same trend with non-significant differences between Raian (CB898) and Toshka (SC 349). Moreover, the lethal concentration (LC50) and LC90 values in tested essential oils (EOs) showed that clove EOs were the most toxic. In contrast, basil and peppermint EOs were the least effective, and immature stages were more sensitive to EOs than adult stages. The infected Toshka (SC 349) discs treated with essential oils and abamectin under in vitro conditions indicated that clove oil is comparable to abamectin regarding its effect on the egg numbers (18.7 and 17.6 egg), immature development time, longevity, life span, and life cycle (20.6 and 20.8 days) of T. urticae. We conclude that the resistant cultivation of cucumber plants can be recommended in integrated pest management programs. The most effective of the tested oils, clove EOs, should be used as alternatives to pesticides to control T. urticae in the protected cultivation of cucumbers