187 research outputs found

    Setting signals for European foreign and security policy: discussing differentiation and flexibility

    Full text link
    Der vorliegende Beitrag befasst sich mit der europĂ€ischen Außen- und Sicherheitspolitik im neuen Jahrtausend. ZunĂ€chst werden neue Integrationsstrukturen diskutiert, dabei wird vor allem der Aspekt der engeren Kooperation hervorgehoben und analysiert. Danach stellt der Autor das Prinzip der 'gemeinschaftsorientierten nicht-militĂ€rischen engeren Kooperation' vor, und die damit verbundenen neuen Aufgaben und Verantwortungen der EU-Institutionen (z.B. Kommission, Rat) werden erörtert. Abschließend wird der militĂ€rische Aspekt der europĂ€ischen Außen- und Sicherheitspolitik beleuchtet und das verĂ€nderte VerhĂ€ltnis zur Nato erlĂ€utert. (ICD

    Novel Regioselective Synthesis of 1,3,4,5-Tetrasubstituted Pyrazoles and Biochemical Valuation on F1FO-ATPase and Mitochondrial Permeability Transition Pore Formation

    Get PDF
    An efficient, eco-compatible, and very cheap method for the construction of fully substituted pyrazoles (Pzs) via eliminative nitrilimine-alkene 1,3-dipolar cycloaddition (ENAC) reaction was developed in excellent yield and high regioselectivity. Enaminones and nitrilimines generated in situ were selected as dipolarophiles and dipoles, respectively. A deep screening of the employed base, solvent, and temperature was carried out to optimize reaction conditions. Recycling tests of ionic liquid were performed, furnishing efficient performance until six cycles. Finally, a plausible mechanism of cycloaddition was proposed. Then, the effect of three different structures of Pzs was evaluated on the F1FO-ATPase activity and mitochondrial permeability transition pore (mPTP) opening. The Pz derivatives’ titration curves of 6a, 6h, and 6o on the F1FO-ATPase showed a reduced activity of 86%, 35%, and 31%, respectively. Enzyme inhibition analysis depicted an uncompetitive mechanism with the typical formation of the tertiary complex enzyme-substrate-inhibitor (ESI). The dissociation constant of the ESI complex (Ki’) in the presence of the 6a had a lower order of magnitude than other Pzs. The pyrazole core might set the specific mechanism of inhibition with the F1FO-ATPase, whereas specific functional groups of Pzs might modulate the binding affinity. The mPTP opening decreased in Pz-treated mitochondria and the Pzs’ inhibitory effect on the mPTP was concentration-dependent with 6a and 6o. Indeed, the mPTP was more efficiently blocked with 0.1 mM 6a than with 1 mM 6a. On the contrary, 1 mM 6o had stronger desensitization of mPTP formation than 0.1 mM 6o. The F1FO-ATPase is a target of Pzs blocking mPTP formation

    investigation of integrated organic rankine cycles and wind turbines for micro scale applications

    Get PDF
    Abstract The aim of this work is the investigation of the performance of an innovative biomass/wind energy integrated system for Combined Heat and Power (CHP) generation in small-scale applications. The system is based on an Organic Rankine Cycle (ORC) fed with biomass and a wind turbine (WT). The ORC and WT sub-systems operate in parallel to produce the required electrical energy and an auxiliary boiler provides thermal energy if the CHP output is low. A preliminary investigation is performed to define the proper size of the wind turbine. Afterwards, the analysis is focused on the integrated system. In particular, the application to the Italian residential sector is analysed. Results illustrate that hybridisation improves the global conversion efficiency, by reducing the biomass consumption and overcoming the intermittency of the wind source. When the wind source is significant, the ORC system can be switched off or operated at partial load

    Experimental Investigation and RSM Modeling of the Effects of Injection Timing on the Performance and NOx Emissions of a Micro-Cogeneration Unit Fueled with Biodiesel Blends

    Get PDF
    The (partial or total) substitution of petro-diesel with biodiesel in internal combustion engines (ICEs) could represent a crucial path towards the decarbonization of the energy sector. However, critical aspects are related to the controversial issue of the possible increase in Nitrogen Oxides (NOx) emissions. In such a framework, the proposed study aims at investigating the effects of biodiesel share and injection timing on the performance and NOx emissions of a diesel micro combined heat and power (CHP) system. An experimental campaign has been conducted considering the following operating conditions: (i) a reference standard injection timing (17.2° BTDC), an early injection timing (20.8° BTDC), and a late injection timing (12.2° BTDC); (ii) low (0.90 kW), partial (2.45 kW), and full (3.90 kW) output power load; and (iii) four fuel blends with different biodiesel (B) shares (B0, B15, B30, and B100). Experimental data were also elaborated on thanks to the response surface modelling (RSM) technique, aiming at (i) quantifying the influences of the above-listed variables and their trends on the responses, and (ii) obtaining a set of predictive numerical models that represent the basis for model-based design and optimization procedures. The results show: (i) an overall improvement of the engine performance due to the biodiesel presence in the fuel blend —in particular, B30 and B100 blends have shown peak values in both electrical (29%) and thermal efficiency (42%); (ii) the effective benefits of late SOI strategies on NOx emissions, quantified in an overall average NOx reduction of 27% for the early-to-late injection, and of 16% for the standard-to-late injection strategy. Moreover, it has emerged that the NOx-reduction capabilities of the late injection strategy decrease with higher biodiesel substitution rates; through the discussion of high-prediction-capable, parametric, data-driven models, an extensive RSM analysis has shown how the biodiesel share promotes an increase of NOx whenever it overcomes a calculated threshold that is proportional to the engine load (from about 66.5% to 85.7% of the biodiesel share)

    Analysis of multi-source energy system for small-scale domestic applications. Integration of biodiesel, solar and wind energy

    Get PDF
    The paper aims at analysing the energy performance of an innovative multi-source energy system for residential small-scale combined heat and power (CHP) applications. The integrated system is based on an Organic Rankine Cycle (ORC) fuelled by biodiesel, a wind turbine, and a photovoltaic unit. The application refers to the Italian residential sector. The ORC system operates in order to satisfy the thermal demand of domestic users while wind and solar based sub-systems work in parallel to increase the electric self-consumption rate. An auxiliary boiler provides thermal energy when the CHP thermal output is low. Furthermore, when the solar and/or wind sources are significant, the ORC can be switched-off or operated at partial load.A preliminary investigation is performed to define the proper size of the ORC unit. Afterwards, the analysis is focused on a multi-variable optimisation of the integrated system. In particular, the nominal power of the wind turbine and photovoltaic units have been found in order to guarantee a proper trade-off between electric self-consumed and surplus energy. Keywords: Biodiesel, Combined heat and power, Multi-source generation, Organic Rankine cycle, Solar, Win

    Europas Zukunft - fĂŒnf EU-Szenarien

    Full text link
    "Untergang oder Aufstieg zur Weltmacht? Zwischen diesen beiden Extremen bewegen sich die von den Autoren entwickelten fĂŒnf EU-Zukunftsszenarien: Titanic, Geschlossenes Kerneuropa, Methode Monnet, Offener Gravitationsraum und Supermacht Europa. Die Weichen fĂŒr die Zukunft des europĂ€ischen Integrationsprozesses werden neu gestellt. Die ReformvorschlĂ€ge des Verfassungskonvents zum EU-Vertragswerk, eine weitere Regierungskonferenz, die beschlossene Erweiterung auf 25 Mitgliedstaaten sowie der Dissens der EuropĂ€er im Irak-Konflikt sind Belege dafĂŒr, dass altbekannte Grundmuster der europĂ€ischen Integration nicht lĂ€nger fortgefĂŒhrt werden können. Fundamentale Eingriffe in die Substanz der europĂ€ischen Integration erfordern das Bewusstsein ĂŒber mögliche Entwicklungslinien der EU. Diesem Zweck dient das Denken in Szenarien ĂŒber die Zukunft der EuropĂ€ischen Union." (Autorenreferat

    Design, fabrication and characterization of piezoelectric cantilever MEMS for underwater application

    Get PDF
    This work shows a preliminary microfabrication route for a novel directional hydrophone based on a cross-shaped design of piezoelectric cantilevers. A thin layer of aluminum nitride (AlN) using Molybdenum (Mo) thin film as electrodes will be exploited as piezoelectric functional layer for the microfabrication of a cantilever-based ultrasonic micro electro mechanical system (MEMS) hydrophone. A parameterized simulation based on length of these cantilevers between 100 and 1000 ÎŒm allowed to set the first resonant mode between 20 kHz and 200 kHz, the desired underwater ultrasonic acoustic range. The microsystem was designed with cantilevers facing each other in a cross configuration in order to have novel MEMS hydrophone with an omnidirectional response. In order to investigate the first resonance frequency mode and displacement measurements, a Laser Doppler Vibrometer was used and good agreement between simulations and experimental results was achieved. Responsivity and directionality measurements of the piezoelectric MEMS cantilevers were performed in water. Maximum sensitivity up to −153 dB with omnidirectional directivity pattern was achieved by fabricated MEMS sensor

    integration of an organic rankine cycle and a photovoltaic unit for micro scale chp applications in the residential sector

    Get PDF
    Abstract The purpose of this work is to analyse the performance of a novel system for combined heat and power (CHP) generation in small-scale applications. The system is based on an Organic Rankine Cycle (ORC) fed with biomass and a photovoltaic (PV) unit. The ORC and PV sub-systems operate in parallel to produce the required electrical energy. A preliminary investigation is performed to define the proper size of the photovoltaic unit. Afterwards, the analysis is focused on the hybrid system and a comparison between the two configurations is carried out. This work demonstrates the potential for integrating biomass and solar energy resources: during daylight, solar radiation is significant and the ORC system can be switched off or operated at partial load. Furthermore, the adoption of biomass makes it possible to overcome the intermittency of solar resource, increase the self-consumed electrical energy, and produce thermal energy, thereby saving natural gas for heating purposes

    Wearable piezoelectric mass sensor based on pH sensitive hydrogels for sweat pH monitoring

    Get PDF
    Colorimetric and electrochemical (bio)sensors are commonly employed in wearable platforms for sweat monitoring; nevertheless, they suffer from low stability of the sensitive element. In contrast, mass-(bio)sensors are commonly used for analyte detection at laboratory level only, due to their rigidity. To overcome these limitations, a flexible mass-(bio)sensor for sweat pH sensing is proposed. The device exploits the flexibility of piezoelectric AlN membranes fabricated on a polyimide substrate combined to the sensitive properties of a pH responsive hydrogel based on PEG-DA/CEA molecules. A resonant frequency shift is recorded due to the hydrogel swelling/shrinking at several pH. Our device shows a responsivity of about 12 kHz/pH unit when measured in artificial sweat formulation in the pH range 3-8. To the best of our knowledge, this is the first time that hydrogel mass variations are sensed by a flexible resonator, fostering the development of a new class of compliant and wearable devices
    • 

    corecore