930 research outputs found

    Comparison of Geant4 hadron generation with data from the interactions with beryllium nuclei of +8.9 GeV/c protons and pions, and of -8 GeV/c pions

    Get PDF
    Hadron generation in the Geant4 simulation tool kit is compared with inclusive spectra of secondary protons and pions from the interactions with beryllium nuclei of +8.9 GeV/c protons and pions, and of -8.0 GeV/c pions. The data were taken in 2002 at the CERN Proton Synchrotron with the HARP spectrometer. We report on significant disagreements between data and simulated data especially in the polar-angle distributions of secondary protons and pions.Comment: 15 pages, 13 figure

    Cross-Sections of Large-Angle Hadron Production in Proton- and Pion-Nucleus Interactions V: Lead Nuclei and Beam Momenta from +/-3 Gev/c to +/-15 Gev/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary lead target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles 20 to 125 degrees. Cross-sections on lead nuclei are compared with cross-sections on beryllium, copper, and tantalum nuclei.Comment: 67 pages, 13 figures, 47 table

    Cross-sections of large-angle hadron production in proton-- and pion--nucleus interactions VIII: aluminium nuclei and beam momenta from {\pm}3 GeV/c to {\pm}15 GeV/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {\lambda}int thick stationary aluminium target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.Comment: 71 pages, 16 figures, 47 table

    Cross-sections of large-angle hadron production in proton- and pion-nucleus interactions VI: carbon nuclei and beam momenta from \pm 3 GeV/c to \pm 15 GeV/c

    Full text link
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary carbon target, of proton and pion beams with momentum from \pm 3 GeV/c to \pm 15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on carbon nuclei are compared with cross-sections on beryllium, copper, tantalum and lead nuclei.Comment: 67 pages, 13 figure

    Simulation of Light Antinucleus-Nucleus Interactions

    Full text link
    Creations of light anti-nuclei (anti-deuterium, anti-tritium, anti-He3 and anti-He4) are observed by collaborations at the LHC and RHIC accelerators. Some cosmic ray experiments are aimed to find the anti-nuclei in cosmic rays. To support the experimental studies of the anti-nuclei a Monte Carlo simulation of anti-nuclei interactions with matter is implemented in the Geant4 toolkit. The implementation combines practically all known theoretical approaches to the problem of antinucleon-nucleon interactions.Comment: 8 pages, 5 figure

    Cross-Sections of Large-Angle Hadron Production in Proton- and Pion-Nucleus Interactions III: Tantalum Nuclei and Beam Momenta from +/-3 Gev/c to +/-15 Gev/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tantalum target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. They are of particular relevance for the optimization of the design parameters of the proton driver of a neutrino factory.Comment: 68 pages, 12 figures, corrections in v2: added 'HARP -CDP group' to author name, corrected two typos in Table 4 (last two p values for 65-90 degrees were all 0.972

    K*(892)(0) and phi(1020) production in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    The yields of the K*(892)(0) and phi(1020) resonances are measured in Pb-Pb collisions at root s(NN) = 2.76 TeV through their hadronic decays using the ALICE detector. The measurements are performed in multiple centrality intervals at mid-rapidity (vertical bar y vertical bar < 0.5) in the transverse-momentum ranges 0.3 < p(T) < 5 GeV/c for the K*(892)(0) and 0.5 < p(T) < 5 GeV/c for the phi(1020). The yields of K*(892)(0) are suppressed in central Pb-Pb collisions with respect to pp and peripheral Pb-Pb collisions (perhaps due to rescattering of its decay products in the hadronic medium), while the longer-lived phi(1020) meson is not suppressed. These particles are also used as probes to study the mechanisms of particle production. The shape of the pT distribution of the phi(1020) meson, but not its yield, is reproduced fairly well by hydrodynamic models for central Pb-Pb collisions. In central Pb-Pb collisions at low and intermediate p(T), the p/phi(1020) ratio is flat in p(T), while the p/pi and phi(1020)/pi ratios show a pronounced increase and have similar shapes to each other. These results indicate that the shapes of the p(T) distributions of these particles in central Pb-Pb collisions are determined predominantly by the particle masses and radial flow. Finally, phi(1020) production in Pb-Pb collisions is enhanced, with respect to the yield in pp collisions and the yield of charged pions, by an amount similar to the Lambda and Xi

    Blockade of EIF5A hypusination limits colorectal cancer growth by inhibiting MYC elongation

    Get PDF
    Eukaryotic Translation Initiation Factor 5A (EIF5A) is a translation factor regulated by hypusination, a unique posttranslational modification catalyzed by deoxyhypusine synthetase (DHPS) and deoxyhypusine hydroxylase (DOHH) starting from the polyamine spermidine. Emerging data are showing that hypusinated EIF5A regulates key cellular processes such as autophagy, senescence, polyamine homeostasis, energy metabolism, and plays a role in cancer. However, the effects of EIF5A inhibition in preclinical cancer models, the mechanism of action, and specific translational targets are still poorly understood. We show here that hypusinated EIF5A promotes growth of colorectal cancer (CRC) cells by directly regulating MYC biosynthesis at specific pausing motifs. Inhibition of EIF5A hypusination with the DHPS inhibitor GC7 or through lentiviral-mediated knockdown of DHPS or EIF5A reduces the growth of various CRC cells. Multiplex gene expression analysis reveals that inhibition of hypusination impairs the expression of transcripts regulated by MYC, suggesting the involvement of this oncogene in the observed effect. Indeed, we demonstrate that EIF5A regulates MYC elongation without affecting its mRNA content or protein stability, by alleviating ribosome stalling at five distinct pausing motifs in MYC CDS. Of note, we show that blockade of the hypusination axis elicits a remarkable growth inhibitory effect in preclinical models of CRC and significantly reduces the size of polyps in APCMin/+ mice, a model of human familial adenomatous polyposis (FAP). Together, these data illustrate an unprecedented mechanism, whereby the tumor-promoting properties of hypusinated EIF5A are linked to its ability to regulate MYC elongation and provide a rationale for the use of DHPS/EIF5A inhibitors in CRC therapy

    Production of inclusive gamma(1S) and gamma(2S) in p-Pb collisions at, root S-NN=5.02 TeV

    Get PDF
    We report on the production of inclusive gamma(1S) and gamma(2S) in p-Pb collisions at root S-NN = 5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (-4.46 < ycms < 2.96) and forward (2.03 < ycms <3.53) rapidity down to zero transverse momentum. The production cross sections of the gamma(1S) and gamma(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of gamma(1S). A suppression of the inclusive gamma(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects. (C) 2014 The Authors. Published by Elsevier B.V

    Revision of the 15N(p,{\gamma})16O reaction rate and oxygen abundance in H-burning zones

    Full text link
    The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {\simeq} 30 {\cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the RGB (red giant branch) phase of the star or to the pollution of the primordial gas by an early population of massive AGB (asymptotic giant branch) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. The activation of this cycle depends on the rate of the 15N(p,{\gamma})16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. We present a new measurement of the 15N(p,{\gamma})16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures between 65 {\cdot} 106 K and 780 {\cdot}106 K. This range includes the 15N(p,{\gamma})16O Gamow-peak energy of explosive H-burning taking place in the external layer of a nova and the one of the hot bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. With the present data, we are also able to confirm the result of the previous R-matrix extrapolation. In particular, in the temperature range of astrophysical interest, the new rate is about a factor of 2 smaller than reported in the widely adopted compilation of reaction rates (NACRE or CF88) and the uncertainty is now reduced down to the 10% level.Comment: 6 pages, 5 figure
    corecore